化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2119-2132.DOI: 10.16085/j.issn.1000-6613.2024-0559
邓雪菲1(
), 吕开河1(
), 黎剑1, 孙金声1,2, 樊俊豪1, 廖婷1, 黄宁1
收稿日期:2024-04-03
修回日期:2024-05-27
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
吕开河
作者简介:邓雪菲(1997—),女,硕士研究生,研究方向为油气井化学与工程。E-mail:867386908@qq.com。
基金资助:
DENG Xuefei1(
), LYU Kaihe1(
), LI Jian1, SUN Jinsheng1,2, FAN Junhao1, LIAO Ting1, HUANG Ning1
Received:2024-04-03
Revised:2024-05-27
Online:2025-04-25
Published:2025-05-07
Contact:
LYU Kaihe
摘要:
超深地层钻井面临超高温、超高压、超高应力等复杂地质环境以及钻遇盐膏层、裂缝发育地层,导致钻井液降滤失剂等关键材料发生断裂、蜷曲等构象转变,造成钻井过程中滤失量增大、流变性能恶化等复杂情况。因此,本文从优化线型聚合物分子结构、调控聚合物凝聚态结构、利用纳米复合技术角度出发,对超深井钻井液用聚合物降滤失剂的研究进展进行综述,指出现有3种方法所存在的不足,并提出采用纳微米球形或超支化树形结构、深入研究两性离子聚合物基团间的协同增效机理、引入带疏水基团的材料提高纳米材料的分散稳定性、采用分子模拟与室内实验相结合等方法研发高性能、普适性强的聚合物降滤失剂,并且未来应结合人工智能和大数据技术提高钻井液的自我调节和优化功能。
中图分类号:
邓雪菲, 吕开河, 黎剑, 孙金声, 樊俊豪, 廖婷, 黄宁. 超深井钻井液用聚合物降滤失剂研究现状及发展趋势[J]. 化工进展, 2025, 44(4): 2119-2132.
DENG Xuefei, LYU Kaihe, LI Jian, SUN Jinsheng, FAN Junhao, LIAO Ting, HUANG Ning. Research status and development trend of polymer fluid loss reducer for ultra-deep drilling fluid[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2119-2132.
| 降滤失材料 | 改性方法 | 优点 | 缺点 | 作用机理 |
|---|---|---|---|---|
| 淀粉类 | 交联、醚化、接枝共聚 | 成本低,对环境友好,有一定的抗盐能力 | 抗温能力差[ | 吸附作用、桥联作用 |
| 纤维素类 | 醚化、接枝共聚 | 生物降解性强[ | 抗温能力不足,最高达180℃ | 吸附和包被 |
| 腐殖酸类 | 磺化、共聚 | 降黏作用明显[ | 磺化产品有毒并且污染环境 | 吸附作用 |
| 合成聚合物类 | — | 单体可调,结构可控,分子链热稳定性好 | 极端条件易失效,部分产品降解性差,对环境有污染 | 吸附和包被高分子链缠绕和桥联 |
| 无机/有机复合材料类 | — | 抗温、抗盐性能优异[ | 成本高,配方复杂,污染环境 | 协同作用 |
表1 各类降滤失材料优缺点
| 降滤失材料 | 改性方法 | 优点 | 缺点 | 作用机理 |
|---|---|---|---|---|
| 淀粉类 | 交联、醚化、接枝共聚 | 成本低,对环境友好,有一定的抗盐能力 | 抗温能力差[ | 吸附作用、桥联作用 |
| 纤维素类 | 醚化、接枝共聚 | 生物降解性强[ | 抗温能力不足,最高达180℃ | 吸附和包被 |
| 腐殖酸类 | 磺化、共聚 | 降黏作用明显[ | 磺化产品有毒并且污染环境 | 吸附作用 |
| 合成聚合物类 | — | 单体可调,结构可控,分子链热稳定性好 | 极端条件易失效,部分产品降解性差,对环境有污染 | 吸附和包被高分子链缠绕和桥联 |
| 无机/有机复合材料类 | — | 抗温、抗盐性能优异[ | 成本高,配方复杂,污染环境 | 协同作用 |
| 1 | GUO Xusheng, HU Dongfeng, LI Yuping, et al.Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration[J]. Engineering, 2019, 5(3): 458-470. |
| 2 | 孙金声, 蒋官澄. 钻井工程“血液”—钻完井液技术的发展现状与趋势[J]. 前瞻科技, 2023, 2(2): 62-74. |
| SUN Jinsheng, JIANG Guancheng. Development status and trend of drilling and completion fluid “blood” of drilling projects[J]. Science and Technology Foresight, 2023, 2(2): 62-74. | |
| 3 | 徐志勇. 高性能水基钻井液技术研究进展[J]. 西部探矿工程, 2022, 34(5): 76-77, 79. |
| XU Zhiyong. Research progress of high performance water-based drilling fluid technology[J]. West-China Exploration Engineering, 2022, 34(5): 76-77, 79. | |
| 4 | 刘亚鹏, 吴迪, 宋洪瑞, 等. 耐高温型钻井液用AMPS降滤失剂的研究进展[J]. 应用化工, 2023, 52(10): 2963-2967. |
| LIU Yapeng, WU Di, SONG Hongrui, et al. Research progress of high-temperature resistant AMPS filtrate reducer for drilling fluid[J]. Applied Chemical Industry, 2023, 52(10): 2963-2967. | |
| 5 | 孙金声, 杨杰, 戎克生, 等. 水基钻井液用流型调节剂研究进展[J]. 新疆石油天然气, 2023, 19(2): 1-16. |
| SUN Jinsheng, YANG Jie, RONG Kesheng, et al. Advances in study on rheology modifier for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2): 1-16. | |
| 6 | SHAN Wenjun, MA Jingyuan, JIANG Guancheng, et al. An inverse emulsion polymer as a highly effective salt- and calcium-resistant fluid loss reducer in water-based drilling fluids[J]. ACS Omega, 2022, 7(18): 16141-16151. |
| 7 | CHANG Xiaofeng, SUN Jinsheng, XU Zhe, et al. A novel nano-lignin-based amphoteric copolymer as fluid-loss reducer in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123979. |
| 8 | DAVOODI Shadfar, Mohammed AL-SHARGABI, WOOD David A, et al. Modified-starch applications as fluid-loss reducers in water-based drilling fluids: A review of recent advances[J]. Journal of Cleaner Production, 2024, 434: 140430. |
| 9 | 熊贵霞, 林凌, 冯茹森, 等. 耐温抗盐水基钻井液降滤失剂的研究进展[J]. 石油化工, 2023, 52(11): 1619-1631. |
| XIONG Guixia, LIN Ling, FENG Rusen, et al. Research progress of temperature and salt-resistant fluid loss reducer for water-based drilling fluid[J]. Petrochemical Technology, 2023, 52(11): 1619-1631. | |
| 10 | ZHONG Hanyi, KONG Xiangzheng, CHEN Siqi, et al. Preparation, characterization and filtration control properties of crosslinked starch nanospheres in water-based drilling fluids[J]. Journal of Molecular Liquids, 2021, 325: 115221. |
| 11 | DAVOODI Shadfar, Mohammed AL-SHARGABI, WOOD David A, et al. Synthetic polymers: A review of applications in drilling fluids[J]. Petroleum Science, 2024, 21(1): 475-518. |
| 12 | 孙金声, 黄贤斌, 吕开河, 等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019, 43(5): 73-81. |
| SUN Jinsheng, HUANG Xianbin, Kaihe LYU, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 73-81. | |
| 13 | 王金树, 张玉平, 高树峰, 等. 聚合物型钻井液降滤失剂的合成及其性能研究[J]. 精细石油化工进展, 2024, 25(2): 1-4. |
| WANG Jinshu, ZHANG Yuping, GAO Shufeng, et al. Synthesis and properties of polymer fluid loss reducer for drilling fluid[J]. Advances in Fine Petrochemicals, 2024, 25(2): 1-4. | |
| 14 | 邢林庄, 袁玥辉, 叶成, 等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液, 2023, 40(6): 703-710. |
| XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 703-710. | |
| 15 | 高伟, 李银婷, 余福春, 等. 抗超高温水基钻井液用聚合物降滤失剂的研制[J]. 钻井液与完井液, 2021, 38(2): 146-151, 157. |
| GAO Wei, LI Yinting, YU Fuchun, et al. Development of a polymer filter loss reducer for ultra-high temperature water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 146-151, 157. | |
| 16 | 由福昌, 周书胜, 韩银府, 等. 国内抗高温聚合物降滤失剂研究与进展[J]. 辽宁化工, 2022, 51(2): 231-234. |
| YOU Fuchang, ZHOU Shusheng, HAN Yinfu, et al. Research and development of high temperature resistant polymer filtrate reducer in China[J]. Liaoning Chemical Industry, 2022, 51(2): 231-234. | |
| 17 | 罗平亚, 王路一, 白杨. 深井超深井钻井液技术应用现状及发展展望[J]. 钻采工艺, 2024, 47(2): 10-18. |
| LUO Pingya, WANG Luyi, BAI Yang. Application status and development prospect of drilling fluid technology in deep and ultra-deep wells[J]. Drilling & Production Technology, 2024, 47(2): 10-18. | |
| 18 | 李保陆, 白杨, 王瑞芳, 等. 抗高温抗盐水基降滤失剂的合成与性能评价[J]. 广东化工, 2024, 51(5): 9-13. |
| LI Baolu, BAI Yang, WANG Ruifang, et al. Synthesis and performance evaluation of high temperature and salt water resistant filter loss additives[J]. Guangdong Chemical Industry, 2024, 51(5): 9-13. | |
| 19 | HUANG Zhiming, LUO Yue, JIANG Xia, et al. Synthesis and performance evaluation of amphoteric polymer filtration reducer[J]. Journal of Oil and Gas Technology, 2018, 40(5): 72-75. |
| 20 | 黄贤斌, 孙金声, 吕开河, 等. 抗超高温高密度聚合物饱和盐水钻井液体系[J]. 石油勘探与开发, 2023, 50(5): 1056-1064. |
| HUANG Xianbin, SUN Jinsheng, Kaihe LYU, et al. A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid[J]. Petroleum Exploration and Development, 2023, 50(5): 1056-1064. | |
| 21 | 王中华. 超高温钻井液体系研究(Ⅰ)—抗高温钻井液处理剂设计思路[J]. 石油钻探技术, 2009, 37(3): 1-7. |
| WANG Zhonghua. Studies on ultra-high-temperature drilling fluid system (Ⅰ): Design ultra-high-temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 2009, 37(3): 1-7. | |
| 22 | 杨小华, 王中华. 钻井液用高分子处理剂分子设计[J]. 精细与专用化学品, 2010, 18(1): 14-18. |
| YANG Xiaohua, WANG Zhonghua. Molecular design of polymer treatment agent used for drilling fluid[J]. Fine and Specialty Chemicals, 2010, 18(1): 14-18. | |
| 23 | 谷亨杰. 有机化学实验[M]. 2版. 北京: 高等教育出版社, 2002. |
| GU Hengjie. Experiments in organic chemistry[M]. 2nd ed. Beijing: Higher Education Press, 2002. | |
| 24 | 王中华. 腐殖酸接枝共聚物超高温钻井液降滤失剂合成[J]. 西南石油大学学报(自然科学版), 2010, 32(4): 149-155, 207-208. |
| WANG Zhonghua. The synthesis of the humic acid graft copolymer used for ultra-high temperature drilling fluid loss additive[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(4): 149-155, 207-208. | |
| 25 | 黄维安, 邱正松, 乔军, 等. 抗温抗盐聚合物降滤失剂的研制及其作用机制[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 129-134. |
| HUANG Weian, QIU Zhengsong, QIAO Jun, et al. Development of anti high temperature and salt polymer fluid loss agent and study on its operation mechanisms[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 129-134. | |
| 26 | BAN Guo, XU Jiang, ZENG Jia, et al. Performance and mechanism of new silicone polymer as filtrate reducer with inhibitory effect for water-based drilling fluid[J]. Engineering Research Express, 2022, 4(2): 025030. |
| 27 | 罗春芝, 向欢, 章楚君, 等. 抗温抗盐乳液聚合物降滤失剂的合成与评价[J]. 长江大学学报(自然科学版), 2023, 20(6): 93-102. |
| LUO Chunzhi, XIANG Huan, ZHANG Chujun, et al. Synthesis and evaluation of anti-temperature and anti-salt emulsion polymeric filtrate loss reducer[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(6): 93-102. | |
| 28 | 徐生婧. 水基钻井液用降粘剂的研究进展[J]. 中国石油和化工标准与质量, 2023, 43(15): 99-101. |
| XU Shengjing. Research progress of viscosity reducer for water-based drilling fluid[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(15): 99-101. | |
| 29 | 庞少聪, 安玉秀, 马京缘. 近十年国内钻井液降粘剂研究进展[J]. 钻探工程, 2022, 49(1): 96-103. |
| PANG Shaocong, AN Yuxiu, MA Jingyuan. Research progress of domestic drilling fluid viscosity reducer in recent ten years[J]. Drilling Engineering, 2022, 49(1): 96-103. | |
| 30 | WANG Guoshuai, JIANG Guancheng, YANG Jun, et al. Novel N, N-dimethylacrylamidecopolymer containing multiple rigid comonomers as a filtrate reducer inwater-baseddrilling fluids and mechanism study[J]. Journal of Applied Polymer Science, 2021, 138(39): 51001. |
| 31 | 赵泽. 油基钻井液用腐殖酸类降滤失剂的研制与性能评价[J]. 应用化工, 2014, 43(7): 1189-1191, 1195. |
| ZHAO Ze. Preparation and performance evaluation on humic acid fluid loss additive for oil-based drilling fluid[J]. Applied Chemical Industry, 2014, 43(7): 1189-1191, 1195. | |
| 32 | CAO Jie, MENG Lingwei, YANG Yuping, et al. Novel acrylamide/2-acrylamide-2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an anti-calcium contamination fluid-loss additive for water-based drilling fluids[J]. Energy & Fuels, 2017, 31(11): 11963-11970. |
| 33 | AGHDAM Salar Bagherian, MOSLEMIZADEH Aghil, KOWSARI Elahe, et al. Synthesis and performance evaluation of a novel polymeric fluid loss controller in water-based drilling fluids: High-temperature and high-salinity conditions[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103576. |
| 34 | 闫树鹏, 张冲, 吕华. 两性离子聚合物的研究进展[J]. 功能高分子学报, 2020, 33(1): 1-14. |
| YAN Shupeng, ZHANG Chong, Hua LYU. Advances in zwitterionic polymers[J]. Journal of Functional Polymers, 2020, 33(1): 1-14. | |
| 35 | LIU Luman, SUN Jinsheng, WANG Ren, et al. Synthesis of a new high temperature and salt resistant zwitterionic filtrate reducer and its application in water-based drilling fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129730. |
| 36 | 蒋官澄, 贺垠博, 崔物格, 等. 基于盐响应型两性离子聚合物的饱和盐水钻井液[J]. 石油勘探与开发, 2019, 46(2): 385-390. |
| JIANG Guancheng, HE Yinbo, CUI Wuge, et al. A saturated saltwater drilling fluid based on salt-responsive polyampholytes[J]. Petroleum Exploration and Development, 2019, 46(2): 385-390. | |
| 37 | 崔物格. 两性离子降滤失剂的研制与应用[D]. 北京: 中国石油大学(北京), 2019. |
| CUI Wuge. Synthesis and application of amphoteric fluid loss additive[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| 38 | 马喜平, 李俊辰, 周有祯, 等. 两性离子聚合物降滤失剂的合成及评价[J]. 石油化工, 2020, 49(1): 75-82. |
| MA Xiping, LI Junchen, ZHOU Youzhen, et al. Synthesis and evaluation of zwitterionic polymer fluid loss agent[J]. Petrochemical Technology, 2020, 49(1): 75-82. | |
| 39 | LUO Yunxiang, LIN Ling, YU Wenke, et al. Synthesis and evaluation of betaine copolymer filtrate reducer for drilling mud[J]. Clays and Clay Minerals, 2022, 70(2): 252-269. |
| 40 | LI Jian, SUN Jinsheng, Kaihe LYU, et al. A zwitterionic copolymer as fluid loss reducer for water-based drilling fluids in high temperature and high salinity conditions[J]. Geoenergy Science and Engineering, 2023, 222: 111200. |
| 41 | LIU Fan, JIANG Guancheng, PENG Shuanglei, et al. Amphoteric polymer as an anti-calcium contamination fluid-loss additive in water-based drilling fluids[J]. Energy & Fuels, 2016, 30(9): 7221-7228. |
| 42 | 薛丹, 张笑, 李善建, 等. AMPS/DMAEMA/AM三元共聚物钻井液降滤失剂的研制[J]. 应用化工, 2024, 53(3): 600-603, 607. |
| XUE Dan, ZHANG Xiao, LI Shanjian, et al. Development of AMPS/DMAEMA/AM terpolymer drilling fluid filter loss reduction agent[J]. Journal of Applied Chemical Industry, 2024, 53(3): 600-603, 607. | |
| 43 | 覃孝平, 朱盛, 李跃, 等. 超支化疏水缔合聚合物的合成及性能[J]. 化学研究与应用, 2023, 35(10): 2503-2510. |
| QIN Xiaoping, ZHU Sheng, LI Yue, et al. Synthesis and properties of hyperbranched hydrophobic association polymers[J]. Chemical Research and Application, 2023, 35(10): 2503-2510. | |
| 44 | GRABOWSKI Sławomir J. Classification of so-called non-covalent interactions based on VSEPR model[J]. Molecules, 2021,26 (16): 4939. |
| 45 | DONG Xiaodong, SUN Jinsheng, HUANG Xianbin, et al. Synthesis of a low-molecular-weight filtrate reducer and its mechanism for improving high temperature resistance of water-based drilling fluid gel system[J]. Gels, 2022, 8(10): 619. |
| 46 | 钟汉毅, 高鑫, 邱正松, 等. 环保型β-环糊精聚合物微球高温降滤失作用机理[J]. 石油学报, 2021, 42(8): 1091-1102, 1112. |
| ZHONG Hanyi, GAO Xin, QIU Zhengsong, et al. Mechanism of filtration loss reduction of environment-friendly β-cyclodextrin polymer microspheres under high temperatures[J]. Acta Petrolei Sinica, 2021, 42(8): 1091-1102, 1112. | |
| 47 | ZHONG Hanyi, GAO Xin, QIU Zhengsong, et al. Insight into β-cyclodextrin polymer microsphere as a potential filtration reducer in water-based drilling fluids for high temperature application[J]. Carbohydrate Polymers, 2020, 249: 116833. |
| 48 | SUN Jinsheng, ZHANG Xianfa, Kaihe LYU, et al. Synthesis of hydrophobic associative polymers to improve the rheological and filtration performance of drilling fluids under high temperature and high salinity conditions[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109808. |
| 49 | 鄢捷年. 钻井液工艺学[M]. 东营: 中国石油大学出版社, 2001: 63-69. |
| YAN Jienian. Drilling fluid technology[M]. China University of Petroleum Press, 2001: 63-69. | |
| 50 | 陈德军, 雒和敏, 铁成军, 等. 钻井液降滤失剂研究述论[J]. 油田化学, 2013, 30(2): 295-300. |
| CHEN Dejun, LUO Hemin, Chengjun TIE, et al. Summary on fluid loss additive used for drilling fluids[J]. Oilfield Chemistry, 2013, 30(2): 295-300. | |
| 51 | QIN Bo, ZHANG Shuai, SUN Peng, et al. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains[J]. Advanced Materials, 2020, 32(36): 2000096. |
| 52 | 戎克生, 杨彦东, 徐生江, 等. 抗高温微交联聚合物降滤失剂的制备与性能评价[J]. 油田化学, 2018, 35(4): 582-586, 591. |
| RONG Kesheng, YANG Yandong, XU Shengjiang, et al. Preparation and performance evaluation of micro-crosslinking polymer filtration reducer with high temperature resistance[J]. Oilfield Chemistry, 2018, 35(4): 582-586, 591. | |
| 53 | 杨俊, 蒋官澄, 王国帅, 等. 自交联型油基钻井液降滤失剂的研制与评价[J]. 钻井液与完井液, 2022, 39(6): 685-691. |
| YANG Jun, JIANG Guancheng, WANG Guoshuai, et al. Development and evaluation of a self-crosslinking filter loss reducer for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 685-691. | |
| 54 | LI Jian, SUN Jinsheng, Kaihe LYU, et al. Temperature- and salt-resistant micro-crosslinked polyampholyte gel as fluid-loss additive for water-based drilling fluids[J]. Gels, 2022, 8(5): 289. |
| 55 | WANG Chaoqun, DING Wei. Fabrication of a state of the art mesh lock polymer for water based solid free drilling fluid[J]. Scientific Reports, 2021, 11: 18870. |
| 56 | 徐桂发, 刘平伟, 李伯耿, 等. 梳型聚合物流变研究进展[J]. 高校化学工程学报, 2022, 36(3): 293-306. |
| XU Guifa, LIU Pingwei, LI Bogeng, et al. Advance in the rheology study of comb polymers[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(3): 293-306. | |
| 57 | LIU Xiao, GUAN Jianan, LAI Guanghong, et al. Stimuli-responsive adsorption behavior toward heavy metal ions based on comb polymer functionalized magnetic nanoparticles[J]. Journal of Cleaner Production, 2020, 253: 119915. |
| 58 | ABBASI Mahdi, FAUST Lorenz, WILHELM Manfred. Comb and bottlebrush polymers with superior rheological and mechanical properties[J]. Advanced Materials, 2019, 31(26): 1806484. |
| 59 | LIANG Heyi, GREST Gary S, DOBRYNIN Andrey V. Brush-like polymers and entanglements: From linear chains to filaments[J]. ACS Macro Letters, 2019, 8(10): 1328-1333. |
| 60 | 蓝强, 李公让, 郑成胜, 等. 梳型聚合物降滤失剂DMP-2的研制[J]. 中国石油大学胜利学院学报, 2018, 32(3): 43-47. |
| LAN Qiang, LI Gongrang, ZHENG Chengsheng, et al. Preparation and performance of comb-polymer filtration loss reducer DMP-2[J]. Journal of Shengli College China University of Petroleum, 2018, 32(3): 43-47. | |
| 61 | LIU Lu, PU Xiaolin, RONG Kesheng, et al. Comb-shaped copolymer as filtrate loss reducer for water-based drilling fluid[J]. Journal of Applied Polymer Science, 2018, 135(11): 45989. |
| 62 | 丁伟俊, 张颖, 余维初, 等. 无黏土水基钻井液用超支化聚合物降滤失剂的合成及性能评价[J]. 特种油气藏, 2024, 31(4): 169-174. |
| DING Weijun, ZHANG Ying, YU Weichu, et al. Synthesis and performance evaluation of hyperbranched polymer fluid loss reducer for clay-free water-based drilling fluid[J]. Special Oil and gas Reservoirs, 2024, 31(4): 169-174. | |
| 63 | ZHANG Ying, YU Weichu. Synthesis of hyperbranched polymers and prospects for application in oilfield chemistry[J]. Frontiers in Energy Research, 2022, 10: 894096. |
| 64 | 黎剑, 孙金声, 吕开河, 等. 一种抗高温抗高盐超支化有机硅降滤失剂及其制备方法与应用: CN115947903B[P]. 2023-08-11. |
| LI Jian, SUN Jinsheng, Kaihe LYU, et al. Hyperbranched silicone fluid loss reducer with high temperature and high salt resistance and its preparation method and application: CN115947903B[P]. 2023-08-11. | |
| 65 | 宋永涛. 基于季戊四醇的超支化降滤失剂的合成及评价[D]. 荆州: 长江大学, 2023. |
| SONG Yongtao. Synthesis and performance evaluation of hyperbranched pentaerythritol-based filtrate reducer[D]. Jingzhou: Yangtze University, 2023. | |
| 66 | 袁玥辉, 屈沅治, 高世峰, 等. 抗温抗盐水基钻井液降滤失剂研究进展[J]. 新疆石油天然气, 2023, 19(2): 62-68. |
| YUAN Yuehui, QU Yuanzhi, GAO Shifeng, et al. Advances in study on temperature-resistant and salt-tolerant fluid loss reducers for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2): 62-68. | |
| 67 | 范开鑫. PAAD/改性纳米二氧化硅共聚物钻井液降滤失剂的制备及性能研究[D]. 成都: 西南石油大学, 2017. |
| FAN Kaixin. Preparation and properties of PAAD/modified nano-silica copolymer filtrate reducer for drilling fluid[D]. Chengdu: Southwest Petroleum University, 2017. | |
| 68 | YANG Jie, WANG Ren, SUN Jinsheng, et al. Nanolaponite/comb polymer composite as a rheological modifier for water-based drilling fluids[J]. ACS Applied Nano Materials, 2023, 6(14): 13453-13465. |
| 69 | LI Jian, SUN Jinsheng, Kaihe LYU, et al. Nano-modified polymer gels as temperature- and salt-resistant fluid-loss additive for water-based drilling fluids[J]. Gels, 2022, 8(9): 547. |
| 70 | 王美荣, 林凌, 许爱, 等. 纳米SiO2粒子表面接枝共聚合物微球的制备及其吸附Cu2+性能[J]. 应用化工, 2024, 53(6): 1274-1279. |
| Wang Meirong, Lin Ling, Xu Ai, et al. Preparation of surface grafted copolymer microspheres of nano SiO2 particles and their adsorption performance for Cu2+ [J]. Applied Chemistry, 2024, 53(6): 1274-1279. | |
| 71 | 陈根生. 改性二氧化硅纳米粒子提升泡沫稳定性研究[J]. 化学与生物工程, 2023, 40(10): 45-49. |
| CHEN Gensheng. Enhancement of foam stability with modified silica nanoparticles[J]. Chemistry & Bioengineering, 2023, 40(10): 45-49. | |
| 72 | SHEN Jingjing, YANG Hongbin, LIU Dexin, et al. Effect of inorganic particles on the rheological properties of nano-SiO2 grafted modified polymers[J]. Physics of Fluids, 2023, 35(11): 301-308. |
| 73 | 毛惠, 邱正松, 沈忠厚, 等. 疏水缔合聚合物/纳米二氧化硅降滤失剂的研制及作用机理[J]. 石油学报, 2014, 35(4): 771-778. |
| MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Synthesis and mechanism of hydrophobic associated polymer based nano-silica filtrate reducer[J]. Acta Petrolei Sinica, 2014, 35(4): 771-778. | |
| 74 | LIU Fei, YAO Hailei, LIU Qingxue, et al. Nano-silica/polymer composite as filtrate reducer in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127168. |
| 75 | SUN Jinsheng, CHANG Xiaofeng, ZHANG Fan, et al. Salt-responsive zwitterionic polymer brush based on modified silica nanoparticles as a fluid-loss additive in water-based drilling fluids[J]. Energy & Fuels, 2020, 34(2): 1669-1679. |
| 76 | 张永明. 聚合物/无机物纳米复合降滤失剂的研究[D]. 北京: 北京交通大学, 2010. |
| ZHANG Yongming. Study on filtration reducer of polymer/inorganic nanocomposites[D]. Beijing: Beijing Jiaotong University, 2010. | |
| 77 | 张永明, 朱红, 王芳辉, 等. CTAB/聚合物复合插层膨润土降滤失剂的制备与表征[J]. 功能材料, 2008, 39(12): 2028-2031. |
| ZHANG Yongming, ZHU Hong, WANG Fanghui, et al. Preparation and characterization of CTAB/polymer composite modification of montmorillonite as filtrate reducer[J]. Journal of Functional Materials, 2008, 39(12): 2028-2031. | |
| 78 | GUO Miao, YANG Guangbin, ZHANG Shengmao, et al. Co-modification of bentonite by CTAB and silane and its performance in oil-based drilling mud[J]. Clays and Clay Minerals, 2020, 68(6): 646-655. |
| 79 | LI Pengpeng, LIU Ming, FENG Jie, et al. Copolymer intercalated hydrotalcite sustained release-type fluid loss additive for water-based drilling fluid: Synthesis, characterization, and performance evaluation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669: 131451. |
| 80 | 韩成, 刘贤玉, 杨玉豪, 等. 南海D气田高温防水锁钻井液技术对策研究及应用[J]. 新疆石油天然气, 2019, 15(2): 35-39, 2. |
| HAN Cheng, LIU Xianyu, YANG Yuhao, et al. Research and application of high temperature waterproof lock drilling fluid technology in Nanhai D gas field[J]. Xinjiang Oil & Gas, 2019, 15(2): 35-39, 2. | |
| 81 | JIA Xiangru, ZHAO Xionghu, CHEN Bin, et al. Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids[J]. Applied Surface Science, 2022, 578: 152089. |
| 82 | 冷文龙. 腐殖酸改性环保型降滤失剂研制及作用机理研究[D]. 成都: 西南石油大学, 2019. |
| LENG Wenlong. Development and mechanism of humic acid modified environmental protection filtrate reducer[D]. Chengdu: Southwest Petroleum University, 2019. | |
| 83 | 付宇, 刘祥, 李丽华, 等. 抗高温降滤失剂研究概述[J]. 应用化工, 2022, 51(10): 3049-3052. |
| FU Yu, LIU Xiang, LI Lihua, et al. Overview of research on anti-high temperature fluid loss agent[J]. Applied Chemical Industry, 2022, 51(10): 3049-3052. |
| [1] | 贺静, 郑娜, 徐丽, 沈素丹, 浦群, 房尔园, 介素云. 原子力显微镜红外光谱和化学成像的技术与应用[J]. 化工进展, 2025, 44(4): 2156-2171. |
| [2] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [3] | 宋慈, 李海燕, 张世珍, 刘洪伟, 张建英, 邱家浩, 曹仁伟, 孙坤, 秦颖, 朱明绪, 高梦岩. 自修复防腐蚀涂层的类型及应用现状[J]. 化工进展, 2025, 44(3): 1466-1484. |
| [4] | 雪冰峰, 张烨, 张世元, 付鹏, 崔喆, 张袁铖, 李鑫, 庞新厂, 赵蔚, 张晓朦, 刘民英. 直接固相聚合法制备聚酰胺PA12T及性能表征[J]. 化工进展, 2025, 44(3): 1559-1569. |
| [5] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
| [6] | 黄宁, 孙金声, 刘敬平, 吕开河, 王宗轮, 邓雪菲. 水基钻井液封堵理论和材料研究现状及发展趋势[J]. 化工进展, 2025, 44(1): 367-378. |
| [7] | 王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402. |
| [8] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
| [9] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
| [10] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
| [11] | 孙诗婉, 李欣, 周涵. 辐射冷却涂料及其在能源环境领域的应用[J]. 化工进展, 2024, 43(9): 4961-4969. |
| [12] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
| [13] | 王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489. |
| [14] | 刘金刚, 刘庆旺, 范振忠, 王洋洋, 周明. 超支化絮凝剂对废弃油基钻井液的絮凝效果评价[J]. 化工进展, 2024, 43(8): 4738-4747. |
| [15] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |