化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1466-1484.DOI: 10.16085/j.issn.1000-6613.2024-0448
宋慈1,2(
), 李海燕1,2, 张世珍1,2, 刘洪伟3, 张建英1,2, 邱家浩1,2, 曹仁伟1,2, 孙坤1,2, 秦颖1,2, 朱明绪1,2, 高梦岩1,2
收稿日期:2024-03-18
修回日期:2024-05-14
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
宋慈
作者简介:宋慈(1993—),男,硕士,工程师,研究方向为防腐蚀涂料的制备和应用。E-mail:1021616229@qq.com。
SONG Ci1,2(
), LI Haiyan1,2, ZHANG Shizhen1,2, LIU Hongwei3, ZHANG Jianying1,2, QIU Jiahao1,2, CAO Renwei1,2, SUN Kun1,2, QIN Ying1,2, ZHU Mingxu1,2, GAO Mengyan1,2
Received:2024-03-18
Revised:2024-05-14
Online:2025-03-25
Published:2025-04-15
Contact:
SONG Ci
摘要:
自修复防腐蚀涂层是一类先进特种功能化涂层,可实现涂层轻微破损的自动修复,为金属提供长效腐蚀防护性能。近年来,尽管自修复防腐蚀涂层在涂料领域的研究备受瞩目,但关于其细致的分类和深入的探讨仍显不足,这在一定程度上限制了对其性能和应用潜力的全面理解。本文深入剖析了自修复防腐蚀涂层的运作原理,详细阐述了其多样化的类型,并系统地回顾了该领域的研究成果。在肯定其实现涂层完整性并显著提升防腐效能的同时,也指出了当前涂层存在的潜在缺陷,如自修复效率低、自修复条件要求高等。针对这些问题,本文提出了一系列优化建议,期望能为未来涂层技术的发展提供有价值的参考。随着技术的不断进步,自修复防腐蚀涂层有望在汽车制造、海洋工程、水电核电等领域发挥更加重要的作用,为金属基材的长期、稳定防腐保护提供坚实保障,从而推动相关行业的可持续发展。
中图分类号:
宋慈, 李海燕, 张世珍, 刘洪伟, 张建英, 邱家浩, 曹仁伟, 孙坤, 秦颖, 朱明绪, 高梦岩. 自修复防腐蚀涂层的类型及应用现状[J]. 化工进展, 2025, 44(3): 1466-1484.
SONG Ci, LI Haiyan, ZHANG Shizhen, LIU Hongwei, ZHANG Jianying, QIU Jiahao, CAO Renwei, SUN Kun, QIN Ying, ZHU Mingxu, GAO Mengyan. Types and application status of the self-repairing anti-corrosion coatings[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1466-1484.
| 类型 | 原理 | 优点 | 缺点 | 优化措施 |
|---|---|---|---|---|
| 外援型自修复防腐蚀涂层 | 内含承载修补剂/缓蚀剂载体材料,涂层破损时修补剂/缓蚀剂逸出,修补破损处或在金属暴露面形成缓蚀层 | 自修复响应条件温和,不需要外部能量;添加适量微胶囊/负载材料可提高整体韧性和防腐蚀介质渗透性 | 适用的载体材料种类不多;修补剂/缓蚀剂载体制备过程复杂烦琐,目前难以大规模生产;涂层自修复及长效防腐蚀性能受到微胶囊及负载材料分散性、相容性、修补剂/缓蚀剂承载量等因素的制约,较为恶劣环境中防腐性能力不足 | 通过结构改性和增大搅拌速率、时间,提升修补剂/缓蚀剂承载结构的分散性与相容性;根据涂层中最需要的位置进行设计和承载材料排列,提高自修复防腐蚀效率;保持合理粒径的前提下提升微胶囊及负载材料的负载能力,携带更多修补剂/缓蚀剂以延长涂层自修复及长效防腐蚀的时限 |
| 本征型自修复防腐蚀涂层 | 利用自身聚合物基体的物理化学结构实现涂层的自修复,并延续腐蚀防护性能 | 对外加修复剂的依赖低,可实现涂层的多次修复;具有修复均一性和大面积修复涂层微裂纹的潜力 | 自修复响应需要较高甚至苛刻的引发条件,实际使用中难以满足;基体树脂合成较复杂、基体树脂选择范围小;涂层存在力学性能较差、抗断裂能力较弱等风险;腐蚀防护方法较为单一 | 将非共价动态相互作用与动态共价键相结合,研制具有多种化学作用结构的涂层基体,达到涂层高力学性能与高自修复性能的最佳平衡;引入更为高效的光催化材料和光热转换材料,使实际使用环境亦可满足自修复相应条件;可适量加入缓蚀剂负载材料,进一步提升涂层的腐蚀防护能力 |
表1 外援型自修复防腐蚀涂层与本征型自修复防腐蚀涂层的比较及优化措施
| 类型 | 原理 | 优点 | 缺点 | 优化措施 |
|---|---|---|---|---|
| 外援型自修复防腐蚀涂层 | 内含承载修补剂/缓蚀剂载体材料,涂层破损时修补剂/缓蚀剂逸出,修补破损处或在金属暴露面形成缓蚀层 | 自修复响应条件温和,不需要外部能量;添加适量微胶囊/负载材料可提高整体韧性和防腐蚀介质渗透性 | 适用的载体材料种类不多;修补剂/缓蚀剂载体制备过程复杂烦琐,目前难以大规模生产;涂层自修复及长效防腐蚀性能受到微胶囊及负载材料分散性、相容性、修补剂/缓蚀剂承载量等因素的制约,较为恶劣环境中防腐性能力不足 | 通过结构改性和增大搅拌速率、时间,提升修补剂/缓蚀剂承载结构的分散性与相容性;根据涂层中最需要的位置进行设计和承载材料排列,提高自修复防腐蚀效率;保持合理粒径的前提下提升微胶囊及负载材料的负载能力,携带更多修补剂/缓蚀剂以延长涂层自修复及长效防腐蚀的时限 |
| 本征型自修复防腐蚀涂层 | 利用自身聚合物基体的物理化学结构实现涂层的自修复,并延续腐蚀防护性能 | 对外加修复剂的依赖低,可实现涂层的多次修复;具有修复均一性和大面积修复涂层微裂纹的潜力 | 自修复响应需要较高甚至苛刻的引发条件,实际使用中难以满足;基体树脂合成较复杂、基体树脂选择范围小;涂层存在力学性能较差、抗断裂能力较弱等风险;腐蚀防护方法较为单一 | 将非共价动态相互作用与动态共价键相结合,研制具有多种化学作用结构的涂层基体,达到涂层高力学性能与高自修复性能的最佳平衡;引入更为高效的光催化材料和光热转换材料,使实际使用环境亦可满足自修复相应条件;可适量加入缓蚀剂负载材料,进一步提升涂层的腐蚀防护能力 |
| 1 | 刘登良. 涂料工艺[M]. 4版. 北京: 化学工业出版社, 2010. |
| LIU Dengliang. Coatings technology[M]. 4th ed. Beijing: Chemical Industry Press, 2010. | |
| 2 | YANG Ying, URBAN Marek W. Self-healing polymeric materials[J]. Chemical Society Reviews, 2013, 42(17): 7446-7467. |
| 3 | WU Min, JOHANNESSON Björn, GEIKER Mette. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material[J]. Construction and Building Materials, 2012, 28(1): 571-583. |
| 4 | KÖTTERITZSCH J, HAGER Martin D, SCHUBERT Ulrich. One-component intrinsic self-healing polymer for coatings based on reversible crosslinking by Diels-Alder-cycloadditions[C]//Proceedings of the 4th International Conference on Self-Healing Materials. Ghent, 2013. |
| 5 | ZHONG Nan, POST Wouter. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 226-239. |
| 6 | 龚文晶, 熊文涛, 张鸿渐, 等. 聚二甲基硅氧烷基自修复防腐涂层研究进展[J]. 电镀与涂饰, 2023, 42(2): 32-40. |
| GONG Wenjing, XIONG Wentao, ZHANG Hongjian, et al. Research progress of polydimethylsiloxane-based self-healing anti-corrosive coatings[J]. Electroplating & Finishing, 2023, 42(2): 32-40. | |
| 7 | KORDAS George, EFTHIMIADOU Eleni K. Self-healing coatings for corrosion protection of metals[M]//LEVY David, ZAYAT Marcos ed. The Sol-gel Handbook. Weinheim: Wiley-VCH 1, 2015: 487. |
| 8 | QIAN Bei, SONG Zuwei, HAO Long, et al. Self-healing epoxy coatings based on nanocontainers for corrosion protection of mild steel[J]. Journal of the Electrochemical Society, 2017, 164(2): C54-C60. |
| 9 | GARCÍA S J, FISCHER H R, VAN DER ZWAAG S. A critical appraisal of the potential of self healing polymeric coatings[J]. Progress in Organic Coatings, 2011, 72(3): 211-221. |
| 10 | TOOHEY Kathleen S, SOTTOS Nancy R, LEWIS Jennifer A, et al. Self-healing materials with microvascular networks[J]. Nature Materials, 2007, 6(8): 581-585. |
| 11 | 许超, 肖调兵, 乔泽, 等. 智能防腐涂层的研究进展及其在国内核电领域的应用前景[J]. 腐蚀与防护, 2023, 44(4): 65-71, 81. |
| XU Chao, XIAO Tiaobing, QIAO Ze, et al. Research progress of smart anti-corrosion coatings and their application prospects in domestic nuclear power plant[J]. Corrosion & Protection, 2023, 44(4): 65-71, 81. | |
| 12 | HUANG Mingxing, YANG Jinglei. Facile microencapsulation of HDI for self-healing anti-corrosion coatings[J]. Journal of Materials Chemistry, 2011, 21(30): 11123. |
| 13 | WANG Wei, XU Likun, LIU Feng, et al. Synthesis of isocyanate microcapsules and micromechanical behavior improvement of microcapsule shells by oxygen plasma treated carbon nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(3): 776-782. |
| 14 | 许栋, 李秋平, 吴霞, 等. 智能自修复防腐涂料研究进展[J]. 现代涂料与涂装, 2020, 23(11): 45-48. |
| XU Dong, LI Qiuping, WU Xia, et al. Research progress of intelligent self-repairing anti-corrosion coatings[J]. Modern Paint & Finishing, 2020, 23(11): 45-48. | |
| 15 | WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797. |
| 16 | 刘晓英, 阮文琳, 张育新, 等. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 257-265. |
| LIU Xiaoying, RUAN Wenlin, ZHANG Yuxin, et al. Inorganic-organic hybrid microcapsules: Preparation technology and applications in anti-wear and corrosion-resistant coatings[J]. Materials Reports, 2023, 37(9): 257-265. | |
| 17 | XIE Cheng, CHENG Chuanrei, ZHAO Peng, et al. High-performance self-healing anti-corrosion epoxy coating based on microencapsulated epoxy-amine chemistry[J]. Journal of Applied Polymer Science, 2024, 141(11): e55099. |
| 18 | 郭茂莲. 双组份自修复微胶嚢的制备及其应用研究[D]. 天津: 天津工业大学, 2019. |
| GUO Maolian. Study on preparation and application of two-component self-repairing micro-adhesive label[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
| 19 | 温礼馨. 反应性微胶囊的制备及其在自愈合涂层构筑中的应用[D]. 杭州: 浙江理工大学, 2021. |
| WEN Lixin. Preparation of reactive microcapsules and their application in the construction of self-healing[D]. Hangzhou: Zhejiang Sci-Tech University, 2021. | |
| 20 | WU Wentao, CHU Liangyong, GARCIA Santiago J, et al. Fabrication of graphene oxide-modified self-healing microcapsules for Cardanol-based epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2023, 183: 107777. |
| 21 | 郭孟莹. 自修复涂料用微胶囊的制备及性能表征[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
| GUO Mengying. Synthetic and characterization of microcapsules for self-healing coatings[D].Harbin: Harbin Engineering University, 2018. | |
| 22 | 靳美亮. 用于自修复涂料的微胶囊的研制[J]. 涂层与防护, 2020, 41(6): 13-16, 34. |
| JIN Meiliang. Development of microcapsules for self-healing coatings[J]. Coating and Protection, 2020, 41(6): 13-16, 34. | |
| 23 | 董邯海, 程勇, 程庆利, 等. 六亚甲基二异氰酸酯微胶囊的制备及其在自修复涂料中的应用[J]. 表面技术, 2023, 52(4): 272-284. |
| DONG Hanhai, CHENG Yong, CHENG Qingli, et al. Preparation of hexamethylene diisocyanate microcapsules and their application in self-healing coatings[J]. Surface Technology, 2023, 52(4): 272-284. | |
| 24 | Taylor ADAMS W, BRECHIN Bryce, TRUONG Thanh-Tam. Preparation and characterization of tungsten oxide fortified poly(urea-formaldehyde) microcapsules for self-healing coatings[J]. Polymer Testing, 2024, 131: 108328. |
| 25 | LI Jianyang, SHI Hongwei, LIU Fuchun, et al. Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection[J]. Progress in Organic Coatings, 2021, 156: 106236. |
| 26 | 金佳赢, 张茗珺, 张琲瑶, 等. 亚麻油微胶囊的制备及环氧涂层的自修复性能[J]. 高分子材料科学与工程, 2022, 38(5): 121-128, 136. |
| JIN Jiaying, ZHANG Mingjun, ZHANG Beiyao, et al. Preparation of linseed oil-loaded microcapsules and self-healing properties of epoxy coatings[J]. Polymer Materials Science & Engineering, 2022, 38(5): 121-128, 136. | |
| 27 | 张青青, 陈亚鑫, 刘仁, 等. 基于聚苯胺微胶囊的双重自修复防腐涂层[J]. 高分子学报, 2023, 54(5): 720-730. |
| ZHANG Qingqing, CHEN Yaxin, LIU Ren, et al. Dual-action self-healing anti-corrosive coating based on polyaniline microcapsules[J]. Acta Polymerica Sinica, 2023, 54(5): 720-730. | |
| 28 | SONG Yan, CHEN Kaifeng, WANG Jingjing, et al. Synthesis of polyurethane/poly(urea-formaldehyde) double-shelled microcapsules for self-healing anti-corrosion coatings[J]. Chinese Journal of Polymer Science, 2020, 38(1): 45-52. |
| 29 | LIU Tianhui, ZHAO Yuzeng, DENG Yining, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2024, 188: 108247. |
| 30 | SUN Jiyu, LI Wen, ZHAN Yuchao, et al. Two preparation processes for anti-corrosion and self-healing epoxy coatings containing the poly(calcium alginate) microcapsules loaded with tung oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128600. |
| 31 | 张琲瑶. 微纳米容器负载缓蚀剂的制备及自修复涂层防腐性能研究[D]. 大庆: 东北石油大学, 2023. |
| ZHANG Beiyao. Preparation of micro-nano container loaded with corrosion inhibitor for self-healing anti-corrosive coating[D]. Daqing: Northeast Petroleum University, 2023. | |
| 32 | Cristina ZEA, Jenifer ALCÁNTARA, Rosa BARRANCO-GARCÍA, et al. Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection[J]. Nanomaterials, 2018, 8(7): 478. |
| 33 | 曹扬. pH敏感型缓蚀剂控释系统的构建及其在自修复有机涂层中的应用[D]. 合肥: 中国科学技术大学, 2022. |
| CAO Yang. Fabrication of pH-sensitive corrosion inhibitor controlled release system and its application in organic self-healing coating[D]. Hefei: University of Science and Technology of China, 2022. | |
| 34 | LI Jianyang, SHI Hongwei, GU Songhua, et al. A smart anti-corrosive coating based on pH-sensitive microspheres fabricated via a facile method for protection of AA2024-T3[J]. Progress in Organic Coatings, 2024, 189: 108259. |
| 35 | GUO Yandong, WU Yuanlong, GUO Tengfei, et al. Preparation of self-healing superhydrophobic polyacrylate coatings based on silica matrix-microcapsules containing corrosion inhibitor for long-term corrosion protection[J]. Progress in Organic Coatings, 2024, 188: 108267. |
| 36 | SIVA T, RAMADOSS Ananthakumar, SATHIYANARAYANAN S. Emerging action of corrosion prevention based on sustained self-healing coatings[J]. Surfaces and Interfaces, 2021, 26: 101440. |
| 37 | DEHGHANI Ali, BAHLAKEH Ghasem, RAMEZANZADEH Bahram, et al. Cyclodextrin-based nano-carrier for intelligent delivery of dopamine in a self-healable anti-corrosion coating[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105457. |
| 38 | CHENG Li, LIU Chengbao, WU Hao, et al. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings[J]. Journal of Materials Science & Technology, 2021, 80: 36-49. |
| 39 | LIU Jianguo, HUANG Wenrui, ZHANG Kailong, et al. Early warning and self-repair properties of o-phenanthroline modified graphene oxide anti-corrosion coating[J]. Progress in Organic Coatings, 2024, 189: 108274. |
| 40 | FENG Yingying, CUI Yexiang, ZHANG Mingjun, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581. |
| 41 | ISMAIL Norhan Ashraf, SHAKOOR R A, Noora AL-QAHTANI, et al. Multilayered LDH/microcapsule smart epoxy coating for corrosion protection[J]. ACS Omega, 2023, 8(34): 30838-30849. |
| 42 | ZHANG Meng, WAN Jieru, WANG Jian, et al. Smart self-healing coating with multiple synergistic effects based on ZIF-11 for corrosion protection of carbon steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133186. |
| 43 | HAO Zhentao, CHEN Si, CHEN Zhiwei, et al. Water-triggered self-healing composite coating: Fabrication and anti-corrosion application[J]. Polymers, 2022, 14(9): 1847. |
| 44 | DAVARPANAH Ali, KERAMATINIA Motahhare, SOROUSH Elham, et al. Improving the polyester powder coating self-healing anti-corrosion properties via the steel surface decoration with Ce-doped-ZIF-8@ZPMn film[J]. Surfaces and Interfaces, 2023, 41: 103144. |
| 45 | LIU Tengfei, LIU Yuanshuang, QU Dingrong, et al. Smart self-healing coating based on the covalent organic frameworks (COF LZU-1) for corrosion protection of steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685: 133246. |
| 46 | ZHANG H H, BIAN H, ZHANG X, et al. Preparation and characterization of hollow ceria based smart anti-corrosive coatings on copper[J]. Surfaces and Interfaces, 2024, 45: 103930. |
| 47 | SUN Wenhui, TANG Erjun, ZHAO Lulu, et al. The waterborne epoxy composite coatings with modified graphene oxide nanosheet supported zinc ion and its self-healing anti-corrosion properties[J]. Progress in Organic Coatings, 2023, 182: 107609. |
| 48 | CHEN Zhihao, GONG Bin, LI Xianliang, et al. Intelligent self-healing anti-corrosive coatings with crosslinked conducting polypyrrole hydrogel network[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132078. |
| 49 | BANERJEE Debika, GUO Xiaohang, BENAVIDES Jaime, et al. Designing green self-healing anti-corrosion conductive smart coating for metal protection[J]. Smart Materials and Structures, 2020, 29(10): 105027. |
| 50 | Jaehoon JOO, KANG Minjoo, MOON Hyoung-Seok, et al. Design and experimental studies of self-healable anti-corrosion coating: Passivation of metal surfaces by silicone oil impregnated porous oxides[J]. Surface and Coatings Technology, 2020, 404: 126595. |
| 51 | LIU Yuping, ZHAN Yuchao, TIAN Limei, et al. Study on the anti-corrosion and antifouling performance of magnetically responsive self-healing polyurethane coatings[J]. Progress in Organic Coatings, 2024, 186: 108047. |
| 52 | ASADI Najmeh, NADERI Reza, MAHDAVIAN Mohammad. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating[J]. Corrosion Science, 2019, 151: 69-80. |
| 53 | MAJIDI Rezvan, NOURI Nazanin, KERAMATINIA Motahhare, et al. ZPCC-Zn-Al-LDH surface bilayer; toward designing a durable self-healable nano-structured film with the utmost corrosion resistance[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 156: 105343. |
| 54 | ZHANG Ming qiu, RONG Min zhi. Self-healing polymers and polymer composites[M]. New York: John Wiley & Sons, 2011. |
| 55 | 张又豪. 基于可逆共价键的多功能自修复交联型树脂的研究[D]. 苏州: 苏州大学, 2019. |
| ZHANG Youhao. Multifunctional self-healable crosslinked resins based on reversible covalent bonds[D]. Suzhou: Soochow University, 2019. | |
| 56 | 赵凯锋. 基于Diels-Alder可逆共价键自修复聚合物的制备与性能研究[D]. 青岛: 青岛科技大学, 2017. |
| ZHAO Kaifeng. Study on the preparation and properties of the self-healing polymer based on diels-alder reversible covalent bonding[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
| 57 | 朱丹丹. 基于氢键的自愈合聚合物和超疏水性自修复导电涂层的制备及性能研究[D]. 上海: 上海交通大学, 2015. |
| ZHU Dandan. Fabrication and investigation of self-healing polymers based on H-bonding and conductive coating with repeatedly healable superhydrophobicity[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
| 58 | FORTUNATO Giovanni, VAN DEN TEMPEL Paul, BOSE Ranjita K. Advances in self-healing coatings based on Diels-Alder chemistry[J]. Polymer, 2024, 294: 126693. |
| 59 | YU Changjiang, WANG Zhanhua, FEI Guoxia, et al. Robust self-healing waterborne polyurethane coatings via dynamic covalent Diels-Alder bonds for corrosion protection[J]. Journal of Polymer Science, 2024, 62(5): 815-825. |
| 60 | YANG Shiwen, DU Xiaosheng, DENG Sha, et al. Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage[J]. Chemical Engineering Journal, 2020, 398: 125654. |
| 61 | FARSHCHI Negin, Michaela GEDAN-SMOLKA, STOMMEL Markus. Preparation and characterization of self-healing polyurethane powder coating using Diels-Alder reaction[J]. Polymers, 2021, 13(21): 3803. |
| 62 | ZHANG Binbin, FAN Hao, XU Weichen, et al. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion[J]. Journal of Materials Research and Technology, 2022, 17: 2684-2689. |
| 63 | CAI Zhentao, LI Chunping, ZHANG Daquan, et al. An anti-corrosion coating with self-healing function of polyurethane modified by lipoic acid[J]. Journal of Coatings Technology and Research, 2023, 20(2): 713-724. |
| 64 | SHI Biru, WU Haohao, SHENG Dekun, et al. Near-infrared radiation and heat dual-induced self-healing polyurethane with anti-abrasion ability[J]. Progress in Organic Coatings, 2022, 170: 106940. |
| 65 | WU Jianxin, LIU Xiaochun, CHEN Lijing, et al. Rapid self-healing and high-mechanical-strength epoxy resin coatings incorporating dynamic disulfide bonds[J]. ACS Applied Polymer Materials, 2024, 6(8): 4778-4788. |
| 66 | SINGH Poonam, RAO Akula Umamaheshwara, SHARMA Harsh, et al. Microwave assisted self-repairable vitrimeric coating for anti-corrosive applications[J]. Progress in Organic Coatings, 2024, 191: 108411. |
| 67 | GUAN Ying, ZHANG Yongjun. Boronic acid-containing hydrogels: Synthesis and their applications[J]. Chemical Society Reviews, 2013, 42(20): 8106-8121. |
| 68 | LIU Chao, YIN Qing, LI Xi, et al. A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance[J]. Advanced Composites and Hybrid Materials, 2021, 4(1): 138-149. |
| 69 | DE SOUZA Mandy, DUBOIS Charlotte, ZHANG Jane, et al. Water activated healing of thiolene boronic ester coatings[J]. Progress in Organic Coatings, 2020, 139: 105424. |
| 70 | LIU Yongqi, LI Ziyuan, ZHANG Caifu, et al. A self-healing thermoset epoxy modulated by dynamic boronic ester for powder coating[J]. Polymers, 2023, 15(19): 3894. |
| 71 | BRUN Marie-Priscille, BISCHOFF Laurent, GARBAY Christiane. A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids[J]. Angewandte Chemie International Edition, 2004, 43(26): 3432-3436. |
| 72 | 赵瑞明. 香豆素基环氧树脂的合成、表征及其在自修复涂料中的应用[D]. 广州: 华南理工大学, 2015. |
| ZHAO Ruiming. Synthesis and characterization of coumarin derivatives and its application in self-healing smart coatings[D]. Guangzhou: South China University of Technology, 2015. | |
| 73 | 郭飞. 水性聚氨酯弹性防护涂层的自愈合行为与机理[D]. 大连: 大连海事大学, 2018. |
| GUO Fei. Investigation on the self-healing behavior and mechanism of polyurethane elastomer[D]. Dalian: Dalian Maritime University, 2018. | |
| 74 | WANG Lin, WANG Xuebin, LIU Tong, et al. Bio-inspired self-healing and anti-corrosion waterborne polyurethane coatings based on highly oriented graphene oxide[J]. NPJ Materials Degradation, 2023, 7: 96. |
| 75 | BEACH Maximilian A, DAVEY Tim W, SUBRAMANIAN Priya, et al. A self-healing waterborne acrylic latex coating based on intrinsic hydrogen bonding[J]. Progress in Organic Coatings, 2024, 188: 108189. |
| 76 | CHEN Tao, WU Hao, ZHANG Wanyu, et al. A sustainable body-temperature self-healing polyurethane nanocomposite coating with excellent strength and toughness through optimal hydrogen-bonding interactions[J]. Progress in Organic Coatings, 2023, 185: 107876. |
| 77 | REN Shihong, ZHOU Wenjuan, SONG Kai, et al. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds[J]. Progress in Organic Coatings, 2023, 180: 107571. |
| 78 | 林木松, 彭磊, 张晟, 等. 电缆护套光屏蔽自愈合涂料的制备及性能[J]. 高等学校化学学报, 2019, 40(8): 1766-1774. |
| LIN Musong, PENG Lei, ZHANG Sheng, et al. Preparation and functions of self-healing light-shielding paints for cable cover[J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1766-1774. | |
| 79 | HU Zhen, ZHANG Dayu, LU Fei, et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions[J]. Macromolecules, 2018, 51(14): 5294-5303. |
| 80 | GUEDES Gabriela, WANG Shiqi, FONTANA Flavia, et al. Dual-crosslinked dynamic hydrogel incorporating{Mo154}with pH and NIR responsiveness for chemo-photothermal therapy[J]. Advanced Materials, 2021, 33(40): 2007761. |
| 81 | LUO Guangbing, PANG Bo, LUO Xingqi, et al. Brominated butyl rubber anti-corrosive coating and its self-healing behaviors[J]. Chinese Journal of Polymer Science, 2023, 41(2): 297-305. |
| 82 | WANG Fei, WANG Wentao, ZHANG Cheng, et al. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing[J]. Composites Part B: Engineering, 2021, 219: 108927. |
| 83 | HU Peng, XIE Qingyi, MA Chunfeng, et al. Fouling resistant silicone coating with self-healing induced by metal coordination[J]. Chemical Engineering Journal, 2021, 406: 126870. |
| 84 | WANG Tong, WANG Wei, FENG Huimeng, et al. Photothermal nanofiller-based polydimethylsiloxane anti-corrosion coating with multiple cyclic self-healing and long-term self-healing performance[J]. Chemical Engineering Journal, 2022, 446: 137077. |
| 85 | SHENG Yeming, WANG Minhui, ZHANG Kangping, et al. An “inner soft external hard”, scratch-resistant, self-healing waterborne poly(urethane-urea) coating based on gradient metal coordination structure[J]. Chemical Engineering Journal, 2021, 426: 131883. |
| 86 | LIU Yuetao, ZHAO Susu, JIANG Yujie, et al. AgNP hybrid organosilicon antifouling coating with spontaneous self-healing and long-term antifouling properties[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12999-13008. |
| 87 | Zahra SABET-BOKATI, Kazem SABET-BOKATI, RUSSELL Zhila, et al. Anti-corrosion shape memory-assisted self-healing coatings: A review[J]. Progress in Organic Coatings, 2024, 188: 108193. |
| 88 | WANG Lu, ZHANG Fenghua, LIU Yanju, et al. Shape memory polymer fibers: Materials, structures, and applications[J]. Advanced Fiber Materials, 2022, 4(1): 5-23. |
| 89 | DONG Yuhua, WU Kexin, YIN Yuanyuan, et al. Shape memory self-healing coating based on photothermal effect of PPy@PDA nanoparticles[J]. Synthetic Metals, 2021, 280: 116869. |
| 90 | MELGES Fernando Cozim, SILVA Brunela Pereira DA, AOKI Idalina Vieira. Evaluation of the self-healing capabilities and resistance to thermal cycling of a shape-memory epoxy coating containing polycaprolactone microspheres[J]. Progress in Organic Coatings: An International Review Journal, 2023, 174: 107322. |
| 91 | WANG Jinke, MA Lingwei, HUANG Yao, et al. Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms[J]. Composites Part B: Engineering, 2022, 231: 109574. |
| 92 | HAO Zhentao, CHEN Si, LIN Zhifeng, et al. Anti-corrosive composite self-healing coating enabled by solar irradiation[J]. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1355-1366. |
| 93 | DABALEH Amin, MOHAMMADI Ali, SHOJAEI Akbar, et al. Eco-friendly fumed nanosilica@nanodiamond hybrid nanoparticles with dual sustainable self-healing and barrier anti-corrosive performances in epoxy coating[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 5075-5092. |
| 94 | MA Lingwei, WANG Jinke, ZHANG Dawei, et al. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers[J]. Chemical Engineering Journal, 2021, 404: 127118. |
| 95 | HUANG Yao, WANG Panjun, TAN Weimin, et al. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection[J]. Journal of Materials Science & Technology, 2022, 107: 34-42. |
| 96 | DONG Yuhua, YIN Yuanyuan, DU Xueyan, et al. Effect of MXene@PANI on the self-healing property of shape memory-assisted coating[J]. Synthetic Metals, 2022, 291: 117162. |
| 97 | CHENG Li, LIU Chengbao, ZHAO Haichao, et al. Hierarchically self-reporting and self-healing photothermal responsive coatings towards smart corrosion protection[J]. Chemical Engineering Journal, 2023, 467: 143463. |
| 98 | ZHANG Jiaojiao, ZHAO Xia, WEI Jinfei, et al. Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy[J]. Langmuir, 2021, 37(45): 13527-13536. |
| 99 | 赵亚梅, 曹婷婷, 张鹏远, 等. 氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J]. 复合材料学报, 2023, 40(6): 3405-3416. |
| ZHAO Yamei, CAO Tingting, ZHANG Pengyuan, et al. Photothermal self-healing and corrosion resistance of graphene oxide-shape memory epoxy resin/perfluorodecyltrimethoxysilane-polydimethylsiloxane@SiO2 superhydrophobic coatings[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3405-3416. | |
| 100 | DENG Ran, ZENG Liangpeng, WU Qingyun, et al. Self-repairing oil-impregnated gel coatings based on reversible physical cross-linking for anti-fouling and anti-corrosion[J]. Journal of Applied Polymer Science, 2022, 139(16): 51999. |
| 101 | ZHANG Jiaojiao, WEI Jinfei, LI Bucheng, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847. |
| 102 | YANG Jiaxin, WANG Deng, WANG Jihui, et al. Corrosion resistance and near-infrared light induced self-healing behavior of polycaprolactone coating with MIL-53@TA on magnesium alloy[J]. Applied Surface Science, 2022, 585: 152729. |
| 103 | ZHAO Xia, WEI Jinfei, LI Bucheng, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140-149. |
| 104 | THIANGPAK Pakapa, RODCHANAROWAN Aphichart. Self-healing abilities of shape-memory epoxy-contained polycaprolactone microspheres filled with cerium(Ⅲ) nitrate coated on aluminum 2024-T3[J]. ACS Omega, 2020, 5(40): 25647-25654. |
| 105 | REN Chenhao, HUANG Yao, HAO Wenkui, et al. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength[J]. Journal of Materials Science & Technology, 2022, 101: 18-27. |
| 106 | LI Xianliang, GONG Bin, ZHANG Jie, et al. A photothermal and pH-responsive intelligent PSBG nanofiller for enhancing the barrier and self-healing performance of the SMP coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131899. |
| 107 | LIU Chengbao, CHENG Li, HOU Peimin, et al. Photothermal-responsive wormlike polydopamine-wrapped ethylene-vinyl acetate copolymer toward triple-action self-healing anti-corrosion coating[J]. ACS Applied Polymer Materials, 2022, 4(8): 6067-6079. |
| 108 | 赵婉. 基于Diels-Alder反应的漆酚基自修复涂层的制备与性能研究[D]. 杨凌: 西北农林科技大学, 2022. |
| ZHAO Wan. Synthesis and characterization of self-healing urushiol-based coatings based on diels-alder reaction[D]. Yangling: Northwest A & F University, 2022. | |
| 109 | 菅晓霞, 宋育芳, 梁益, 等. 聚氨酯型可自修复涂料的制备及性能研究[J]. 表面技术, 2020, 49(10): 247-252, 308. |
| JIAN Xiaoxia, SONG Yufang, LIANG Yi, et al. Preparation and properties of self-healing polyurethane coating[J]. Surface Technology, 2020, 49(10): 247-252, 308. | |
| 110 | 刘梦月. 低表面能自修复防污涂层的制备与性能研究[D]. 苏州: 苏州科技大学, 2022. |
| LIU Mengyue. Preparation and properties of low surface energy self-healing antifouling coatings[D]. Suzhou: Suzhou University of Science and Technology, 2022. | |
| 111 | LIANG Ke, YANG Zhengsheng, ZOU Zhiheng, et al. Surface corrosion protection designing of particulate electromagnetic material towards self-healable functional composite[J]. Progress in Organic Coatings, 2024, 188: 108251. |
| 112 | TIAN Wei, GUO Zhiling, WANG Shunli, et al. Hydrogen and DA bond-based self-healing epoxy-modified polyurea composite coating with anti-cavitation, anti-corrosion, anti-fouling, and strong adhesion properties[J]. Journal of Materials Science & Technology, 2024, 187: 1-14. |
| 113 | ZHANG Shunhong, SHEN Yu, LU Jialin, et al. Tannic acid-modified g-C3N4 nanosheets/polydimethylsiloxane as a photothermal-responsive self-healing composite coating for smart corrosion protection[J]. Chemical Engineering Journal, 2024, 483: 149232. |
| 114 | ZHANG Han, SUN Wen, WANG Lida, et al. Photothermal cyclic self-healing coating with long-term corrosion protection based on bifunctional graphene[J]. Chemical Engineering Journal, 2023, 473: 145164. |
| 115 | SUN Xiang, GU Shilong, WANG Luoxin, et al. Multifunctional liquid-like magnetic nanofluids mediated coating with anti-corrosion and self-healing performance[J]. Journal of Colloid and Interface Science, 2024, 654: 25-35. |
| [1] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [2] | 赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465. |
| [3] | 雪冰峰, 张烨, 张世元, 付鹏, 崔喆, 张袁铖, 李鑫, 庞新厂, 赵蔚, 张晓朦, 刘民英. 直接固相聚合法制备聚酰胺PA12T及性能表征[J]. 化工进展, 2025, 44(3): 1559-1569. |
| [4] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
| [5] | 丁伟, 杜伟, 郭铁滨, 关潇卓, 王铁铮, 高健桐, 张楠, 李达, 张兰河. L-谷氨酸改性氧化石墨烯复合环氧树脂涂层的制备及防腐性能[J]. 化工进展, 2025, 44(1): 424-435. |
| [6] | 王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402. |
| [7] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
| [8] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
| [9] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
| [10] | 孙诗婉, 李欣, 周涵. 辐射冷却涂料及其在能源环境领域的应用[J]. 化工进展, 2024, 43(9): 4961-4969. |
| [11] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
| [12] | 任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463. |
| [13] | 王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489. |
| [14] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
| [15] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |