化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1485-1495.DOI: 10.16085/j.issn.1000-6613.2024-0462
李家豪1,2(
), 范海明1,2(
), 魏志毅1,2, 程思远1,2
收稿日期:2024-03-21
修回日期:2024-05-12
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
范海明
作者简介:李家豪(2001—),男,硕士研究生,研究方向为化学驱提高采收率。E-mail:ljh20192025@163.com。
基金资助:
LI Jiahao1,2(
), FAN Haiming1,2(
), WEI Zhiyi1,2, CHENG Siyuan1,2
Received:2024-03-21
Revised:2024-05-12
Online:2025-03-25
Published:2025-04-15
Contact:
FAN Haiming
摘要:
纳米材料能够减少水分子团簇结构的形成,显著降低注入压力,同时由于其属于纳米尺度,可以在三相接触区形成楔形分离压力,大大减小驱油阻力。此外,其还具有降低界面张力、改变润湿性等驱油机理,能够有效提高低渗透油藏的采收率。纳米材料的形貌对驱油性能有很大的影响。本文综述了目前常用的纳米材料,并对纳米材料提高采收率机理做了详细总结,重点论述了不同形貌纳米材料在提高采收率领域的研究进展和发展前景。相比于球形纳米材料,片状纳米材料具有明显的取向排列,界面自由能更低,吸附性更强,具有很大的应用潜力。然而,部分片状纳米材料如二硫化钼在地层情况下的长期稳定性无法得到保证,限制了其在低渗透油藏中的应用。针对片状纳米材料,需要深入研究其改性策略及改性后材料性能,尤其是在极端高温高盐环境中的稳定性,以推动纳米材料在提高采收率领域的发展。
中图分类号:
李家豪, 范海明, 魏志毅, 程思远. 纳米材料在低渗透油藏中的研究进展及展望[J]. 化工进展, 2025, 44(3): 1485-1495.
LI Jiahao, FAN Haiming, WEI Zhiyi, CHENG Siyuan. Research progress and prospects of nanomaterials in low-permeability reservoirs[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1485-1495.
| 材料 | 作用 | 参考文献 |
|---|---|---|
| Al2O3、MgO、TiO2 | 降低界面张力、改变润湿性 | [ |
| Al2O3、TiO2 | 降低界面张力、改变润湿性、 形成乳状液 | [ |
| Al2O3、TiO2 | 降低界面张力、改变润湿性 | [ |
| MgO | 降低界面张力、改变润湿性、 增强乳状液稳定性 | [ |
| Al2O3 | 降低界面张力 | [ |
| Fe3O4 | 增强乳状液稳定性 | [ |
| Fe2O3 | 增强乳状液稳定性、降低界面张力 | [ |
| Fe3O4 | 降低界面张力、改变润湿性、 增强乳状液稳定性 | [ |
表1 金属氧化物类型及作用机理
| 材料 | 作用 | 参考文献 |
|---|---|---|
| Al2O3、MgO、TiO2 | 降低界面张力、改变润湿性 | [ |
| Al2O3、TiO2 | 降低界面张力、改变润湿性、 形成乳状液 | [ |
| Al2O3、TiO2 | 降低界面张力、改变润湿性 | [ |
| MgO | 降低界面张力、改变润湿性、 增强乳状液稳定性 | [ |
| Al2O3 | 降低界面张力 | [ |
| Fe3O4 | 增强乳状液稳定性 | [ |
| Fe2O3 | 增强乳状液稳定性、降低界面张力 | [ |
| Fe3O4 | 降低界面张力、改变润湿性、 增强乳状液稳定性 | [ |
| 硫源 | 钼源 | 反应温度/℃ | 尺寸/nm | 参考文献 |
|---|---|---|---|---|
| 硫代乙酰胺 | 三氧化钼 | 200 | 22~200 | [ |
| 硫代乙酰胺 | 钼酸钠 | 200~220 | 100~500 | [ |
| 硫代乙酰胺 | 钼酸铵 | 180 | 100~200 | [ |
| 硫脲 | 钼酸铵 | 200~220 | 约300 | [ |
| 硫化钠 | 三氧化钼 | 300~320 | 约100 | [ |
| L-半胱氨酸 | 三氧化钼 | 200~220 | 约40 | [ |
| 硫氰化钾 | 三氧化钼 | 180 | 30~100 | [ |
表2 溶剂热法制备的二硫化钼
| 硫源 | 钼源 | 反应温度/℃ | 尺寸/nm | 参考文献 |
|---|---|---|---|---|
| 硫代乙酰胺 | 三氧化钼 | 200 | 22~200 | [ |
| 硫代乙酰胺 | 钼酸钠 | 200~220 | 100~500 | [ |
| 硫代乙酰胺 | 钼酸铵 | 180 | 100~200 | [ |
| 硫脲 | 钼酸铵 | 200~220 | 约300 | [ |
| 硫化钠 | 三氧化钼 | 300~320 | 约100 | [ |
| L-半胱氨酸 | 三氧化钼 | 200~220 | 约40 | [ |
| 硫氰化钾 | 三氧化钼 | 180 | 30~100 | [ |
| 合成体系/步骤 | 作用 | 参考文献 |
|---|---|---|
| 使用4-磺苯二氮盐和氯磺酸对GO进行磺化 | 结构分离压力、增强乳状液稳定性、改变润湿性 | [ |
| 通过十六烷基三甲氧基硅烷对GO进行疏水改性 | 改变润湿性、增强乳状液稳定性 | [ |
| 用十二胺通过Pickering乳液模板法对GO进行疏水改性 | 改变润湿性、增强乳状液稳定性、 降低界面张力、降低注入压力 | [ |
| 氨基化氧化石墨烯通过Michael加成反应接枝疏水链 | 改变润湿性、降低界面张力、降低注入压力 | [ |
| 氧化石墨烯一侧接枝亲水聚合物链,另一侧接枝正辛胺 | 降低界面张力 | [ |
| 氧化石墨烯一侧接枝亲水聚合物链,另一侧接枝十八胺 | 改变润湿性、降低界面张力、降低注入压力 | [ |
表3 氧化石墨烯在驱油中的应用情况
| 合成体系/步骤 | 作用 | 参考文献 |
|---|---|---|
| 使用4-磺苯二氮盐和氯磺酸对GO进行磺化 | 结构分离压力、增强乳状液稳定性、改变润湿性 | [ |
| 通过十六烷基三甲氧基硅烷对GO进行疏水改性 | 改变润湿性、增强乳状液稳定性 | [ |
| 用十二胺通过Pickering乳液模板法对GO进行疏水改性 | 改变润湿性、增强乳状液稳定性、 降低界面张力、降低注入压力 | [ |
| 氨基化氧化石墨烯通过Michael加成反应接枝疏水链 | 改变润湿性、降低界面张力、降低注入压力 | [ |
| 氧化石墨烯一侧接枝亲水聚合物链,另一侧接枝正辛胺 | 降低界面张力 | [ |
| 氧化石墨烯一侧接枝亲水聚合物链,另一侧接枝十八胺 | 改变润湿性、降低界面张力、降低注入压力 | [ |
| 1 | 陈世军, 先思蓉. 油田用纳米驱油剂提高采收率的机理与影响因素[J]. 化工技术与开发, 2020, 49(11): 50-54. |
| CHEN Shijun, XIAN Sirong. Mechanism and influence factors of nano-scale oil displacement agents for enhanced oil recovery in oil fields[J]. Technology & Development of Chemical Industry, 2020, 49(11): 50-54. | |
| 2 | 张娜, 吕艳军, 姚瑞清, 等. 基于响应面法优化纳米智能驱油剂提高采收率的研究[J]. 能源化工, 2020, 41(6): 73-80. |
| ZHANG Na, Yanjun LYU, YAO Ruiqing, et al. Study on optimizing nano-intelligent oil displacement agent based on response surface method to enhance oil recovery[J]. Energy Chemical Industry, 2020, 41(6): 73-80. | |
| 3 | 赵洋, 江绍静, 段景杰, 等. 特低渗透油藏超级纳米强降驱油剂的研究与应用——以延长油区志丹油田试验区为例[J]. 非常规油气, 2019, 6(2): 68-72. |
| ZHAO Yang, JIANG Shaojing, DUAN Jingjie, et al. Research and application of super nano strong reducing agent for extra low permeability reservoir—Taking Zhidan oilfield experimental area in Yanchang oilfield as an example[J]. Unconventional Oil & Gas, 2019, 6(2): 68-72. | |
| 4 | 刘璐, 唐凡, 徐春梅, 等. GX-S型纳米驱油剂的性能评价研究[J]. 钻采工艺, 2022, 45(2): 137-142. |
| LIU Lu, TANG Fan, XU Chunmei, et al. Performance evaluation study on gx⁃S nano oil repellents[J]. Drilling & Production Technology, 2022, 45(2): 137-142. | |
| 5 | 吴伟鹏, 侯吉瑞, 屈鸣, 等. 2-D智能纳米黑卡微观驱油机理可视化实验[J]. 油田化学, 2020, 37(1): 133-137. |
| WU Weipeng, HOU Jirui, QU Ming, et al. Microscopic flooding mechanism experiment visualization of 2-D smart black nano-card[J]. Oilfield Chemistry, 2020, 37(1): 133-137. | |
| 6 | 杨景斌, 侯吉瑞, 屈鸣, 等. 2-D智能纳米黑卡在低渗透油藏中的驱油性能评价[J]. 油田化学, 2020, 37(2): 305-310. |
| YANG Jingbin, HOU Jirui, QU Ming, et al. Evaluation of oil displacement performance of two-dimensional smart black nano-card in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 305-310. | |
| 7 | 冯阳, 侯吉瑞, 杨钰龙, 等. 2-D纳米黑卡油水界面微观驱油机理分子动力学模拟[J]. 油田化学, 2022, 39(2): 311-317. |
| FENG Yang, HOU Jirui, YANG Yulong, et al. Molecular dynamics simulation research on microscopic mechanism of two-dimension(2-D)black nanosheet at water/oil interface[J]. Oilfield Chemistry, 2022, 39(2): 311-317. | |
| 8 | 徐苓娜. 多维度典型形貌纳米二氧化锡基烃类气体传感器的检测特性研究[D]. 重庆: 重庆大学, 2016. |
| XU Lingna. Research on monitoring feature of multidimensional and typical morphology of SnO2 based hydrocarbon gas sensors[D]. Chongqing: Chongqing University, 2016. | |
| 9 | CHEN Lifeng, ZHU Xiaoming, WANG Lei, et al. Experimental study of effective amphiphilic graphene oxide flooding for an ultralow-permeability reservoir[J]. Energy & Fuels, 2018, 32(11): 11269-11278. |
| 10 | LI Xin, WANG John. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion[J]. InforMat, 2020, 2(1): 3-32. |
| 11 | LI Yongfei, WANG Yanling, WANG Qian, et al. Achieving the super gas-wetting alteration by functionalized nano-silica for improving fluid flowing capacity in gas condensate reservoirs[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 10996-11006. |
| 12 | 吴一宁, 晏翔, 唐丽莎, 等. 纳米SiO2膨胀驱油剂提高采收率[J]. 深圳大学学报(理工版), 2021, 38(6): 613-620. |
| WU Yining, YAN Xiang, TANG Lisha, et al. Enhancing oil recovery by nano SiO2 expansion oil displacement agent[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(6): 613-620. | |
| 13 | 刘培松, 于欢欢, 牛利永, 等. 纳米SiO2在注水-驱油-油水分离中的界面调控研究进展[J]. 化学研究, 2019, 30(5): 441-453. |
| LIU Peisong, YU Huanhuan, NIU Liyong, et al. Research progress on interface regulation of nano-SiO2 applied in water flooding, EOR, and oil/water separation[J]. Chemical Research, 2019, 30(5): 441-453. | |
| 14 | 石芳, 吴景春, 赵博, 等. Janus微纳米胶囊的结构表征与驱油性能[J]. 硅酸盐学报, 2019, 47(11): 1677-1682. |
| SHI Fang, WU Jingchun, ZHAO Bo, et al. Structure and oil displacement performance of Janus microcapsules[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1677-1682. | |
| 15 | 尚丹森, 侯吉瑞, 程婷婷. SiO2纳米流体在低渗透油藏中的驱油性能和注入参数优化[J]. 油田化学, 2021, 38(1): 137-142. |
| SHANG Dansen, HOU Jirui, CHENG Tingting. Flooding performance and optimization of injection parameters of SiO2 nanofluid in low permeability reservoirs[J]. Oilfield Chemistry, 2021, 38(1): 137-142. | |
| 16 | 白云, 蒲春生, 刘帅, 等. 双亲纳米SiO2颗粒的制备及提高渗吸采收率性能[J]. 精细化工, 2022, 39(4): 828-836. |
| BAI Yun, PU Chunsheng, LIU Shuai, et al. Preparation and enhanced imbibition recovery factor performance of amphiphilic nano-SiO2 particles[J]. Fine Chemicals, 2022, 39(4): 828-836. | |
| 17 | 贺丽鹏, 罗健辉, 丁彬, 等. 特低/超低渗油藏纳米驱油剂的制备与性能[J]. 油田化学, 2018, 35(1): 81-84, 90. |
| HE Lipeng, LUO Jianhui, DING Bin, et al. Preparation and properties of nano oil displacement agent for low/ultra-low permeability reservoir[J]. Oilfield Chemistry, 2018, 35(1): 81-84, 90. | |
| 18 | ALARGOVA Rossitza G, WARHADPANDE Devdutta S, PAUNOV Vesselin N, et al. Foam superstabilization by polymer microrods[J]. Langmuir, 2004, 20(24): 10371-10374. |
| 19 | SENGUR Reyhan, DE LANNOY Charles-Francois, TURKEN Turker, et al. Fabrication and characterization of hydroxylated and carboxylated multiwalled carbon nanotube/polyethersulfone (PES) nanocomposite hollow fiber membranes[J]. Desalination, 2015, 359: 123-140. |
| 20 | LI Xu, PU Chunsheng, CHEN Xin. A novel foam system stabilized by hydroxylated multiwalled carbon nanotubes for enhanced oil recovery: Preparation, characterization and evaluation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127804. |
| 21 | VILELA Carla, SILVESTRE Armando J D, FIGUEIREDO Filipe M L, et al. Nanocellulose-based materials as components of polymer electrolyte fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(35): 20045-20074. |
| 22 | WEI Bing, LI Qinzhi, JIN Fayang, et al. The potential of a novel nanofluid in enhancing oil recovery[J]. Energy & Fuels, 2016, 30(4): 2882-2891. |
| 23 | 魏兵, 田庆涛, 毛润雪, 等. 纳米纤维素材料在油气田开发中的应用与展望[J]. 油气地质与采收率, 2020, 27(2): 98-104. |
| WEI Bing, TIAN Qingtao, MAO Runxue, et al. Application and prospect of nano-cellulosic materials in the development of oil and gas field[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 98-104. | |
| 24 | 吴开丽, 韩陈晓, 于娟娟. 纤维素纳米晶的制备及应用研究进展[J]. 造纸科学与技术, 2020, 39(4): 9-13. |
| WU Kaili, HAN Chenxiao, YU Juanjuan. Research progress on the preparation and application of cellulose nanocrystals[J]. Paper Science & Technology, 2020, 39(4): 9-13. | |
| 25 | LU Yu, LI Jia, GE Lingling, et al. Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations[J]. Carbohydrate Polymers, 2021, 255: 117483. |
| 26 | PARAJULI Sanjiv, ALAZZAM Omayma, WANG Mei, et al. Surface properties of cellulose nanocrystal stabilized crude oil emulsions and their effect on petroleum biodegradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596: 124705. |
| 27 | LI Qi, XIE Bing, WANG Yixiang, et al. Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion[J]. Food Hydrocolloids, 2019, 97: 105214. |
| 28 | MELZER Eva, Jörg KREUTER, DANIELS Rolf. Ethylcellulose: A new type of emulsion stabilizer[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56(1): 23-27. |
| 29 | ZHANG Chunquan, XUE Yan, HUANG Dan, et al. Design and fabrication of anionic/cationic surfactant foams stabilized by lignin-cellulose nanofibrils for enhanced oil recovery[J]. Energy & Fuels, 2020, 34(12): 16493-16501. |
| 30 | LI Zhe, KANG Wanli, LI Menglan, et al. Surface-functionalized cellulose nanocrystals (CNC) and synergisms with surfactant for enhanced oil recovery in low-permeability reservoirs[J]. Petroleum Science, 2023, 20(3): 1572-1583. |
| 31 | NOWROUZI Iman, KHAKSAR MANSHAD Abbas, MOHAMMADI Amir H. Effects of MgO, γ-Al2O3, and TiO2 nanoparticles at low concentrations on interfacial tension (IFT), rock wettability, and oil recovery by spontaneous imbibition in the process of smart nanofluid injection into carbonate reservoirs[J]. ACS Omega, 2022, 7(26): 22161-22172. |
| 32 | BAYAT Ali Esfandyari, JUNIN Radzuan, SAMSURI Ariffin, et al. Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures[J]. Energy & Fuels, 2014, 28(10): 6255-6266. |
| 33 | HENDRANINGRAT Luky, Ole TORSÆTER. Metal oxide-based nanoparticles: Revealing their potential to enhance oil recovery in different wettability systems[J]. Applied Nanoscience, 2015, 5(2): 181-199. |
| 34 | DIBAJI Atieh Sadat, RASHIDI Alimorad, BANIYAGHOOB Sahar, et al. Synthesizing CNT/MgO nanocomposite to form stable Pickering emulsion at high temperature and salinity and its application to improved oil displacement efficiency[J]. Chemical Engineering Research and Design, 2022, 186: 599-609. |
| 35 | BETANCUR Stefania, GIRALDO Lady J, Francisco CARRASCO-MARÍN, et al. Importance of the nanofluid preparation for ultra-low interfacial tension in enhanced oil recovery based on surfactant-nanoparticle-brine system interaction[J]. ACS Omega, 2019, 4(14): 16171-16180. |
| 36 | SAIEN Javad, MOGHADDAMNIA Farzaneh, BAMDADI Hamid. Interfacial tension of methylbenzene-water in the presence of hydrophilic and hydrophobic alumina nanoparticles at different temperatures[J]. Journal of Chemical & Engineering Data, 2013, 58(2): 436-440. |
| 37 | LIN Zhaoyun, YU Dehai, LI Youming. Study on the magnetic ODSA-in-water Pickering emulsion stabilized by Fe3O4 nanoparticle[J]. Colloid and Polymer Science, 2015, 293(1): 125-134. |
| 38 | Liang Ee LOW, Chien Wei OOI, CHAN ENG seng, et al. Dual (magnetic and pH) stimuli-reversible Pickering emulsions based on poly(2-(dimethylamino)ethyl methacrylate)-bonded Fe3O4 nanocomposites for oil recovery application[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103715. |
| 39 | YOON Ki Youl, LI Zicheng, NEILSON Bethany M, et al. Effect of adsorbed amphiphilic copolymers on the interfacial activity of superparamagnetic nanoclusters and the emulsification of oil in water[J]. Macromolecules, 2012, 45(12): 5157-5166. |
| 40 | KHALIL Munawar, AULIA Ghufran, BUDIANTO Emil, et al. Surface-functionalized superparamagnetic nanoparticles (SPNs) for enhanced oil recovery: Effects of surface modifiers and their architectures[J]. ACS Omega, 2019, 4(25): 21477-21486. |
| 41 | EHTESABI H, AHADIAN M M, TAGHIKHANI Vahid. Investigation of diffusion and deposition of TiO2 nanoparticles in sandstone rocks for EOR application[C]//76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014: 1-5. |
| 42 | 冯晓羽, 侯吉瑞, 程婷婷, 等. 油酸改性纳米TiO2的制备及其驱油性能评价[J]. 油田化学, 2019, 36(2): 280-285. |
| FENG Xiaoyu, HOU Jirui, CHENG Tingting, et al. Preparation and oil displacement properties of oleic acid-modified nano-TiO2 [J]. Oilfield Chemistry, 2019, 36(2): 280-285. | |
| 43 | 杨鑫, 孙鹤家, 王伟浩, 等. 磁响应的海藻酸钙微球稳定油包水型Pickering乳液研究[J]. 日用化学工业, 2019, 49(8): 503-507, 514. |
| YANG Xin, SUN Hejia, WANG Weihao, et al. Study on water-in-oil Pickering emulsion stabilized by magnetic responsive calcium alginate microspheres[J]. China Surfactant Detergent & Cosmetics, 2019, 49(8): 503-507, 514. | |
| 44 | Infant RAJ, QU Ming, XIAO Lizhi, et al. Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery[J]. Fuel, 2019, 251: 514-522. |
| 45 | Infant RAJ, LIANG Tuo, QU Ming, et al. An experimental investigation of MoS2 nanosheets stabilized foams for enhanced oil recovery application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125420. |
| 46 | YAO Erdong, WANG Yuechun, BAI Hao, et al. The effect of climbing film on molybdenum disulfide nanosheets flooding in the tertiary oil recovery[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111184. |
| 47 | ZHANG Liang, ZHOU Fujian, LEI Guofa, et al. Synthetic method and oil displacement capacity of nano-MoS2 [J]. Geofluids, 2022, 2022(1): 7150916. |
| 48 | MA Lin, XU Limei, XU Xuyao, et al. Synthesis and characterization of flower-like MOS2 microspheres by a facile hydrothermal route[J]. Materials Letters, 2009, 63(23): 2022-2024. |
| 49 | 李昊, 石楠, 武道吉, 等. MoS2@Fe3O4类芬顿体系催化降解碘帕醇的性能[J]. 工业水处理, 2025, 45(1): 66-72. |
| LI Hao, SHI Nan, WU Daoji, et al. The Fenton-like catalytic performance of MoS2@Fe3O4 for degradation of iopamidol[J]. Industrial Water Treatment, 2025, 45(1): 66-72. | |
| 50 | VAN NGUYEN Tuan, TEKALGNE Mahider, NGUYEN Thang Phan, et al. Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction[J]. International Journal of Energy Research, 2022, 46(8): 11479-11491. |
| 51 | ZHANG Fengfan, LIANG Wei, DONG Zhaoxia, et al. Dispersion stability and interfacial properties of modified MoS2 nanosheets for enhanced oil recovery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132013. |
| 52 | GANESHA H, VEERESH S, NAGARAJU Y S, et al. 2-Dimensional layered molybdenum disulfide nanosheets and CTAB-assisted molybdenum disulfide nanoflower for high performance supercapacitor application[J]. Nanoscale Advances, 2022, 4(2): 521-531. |
| 53 | POURABBAS Behzad, JAMSHIDI Babak. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 55-62. |
| 54 | ZHANG Haiping, LIN Hongfei, ZHENG Ying. Hydrotreatment of light cycle oil over a dispersed MoS2 catalyst[J]. International Journal of Chemical Reactor Engineering, 2016, 14(3): 703-711. |
| 55 | 王小平, 马怀军, 王冬娥, 等. 水热法制备分散型Co促进的MoS2悬浮床加氢脱硫催化剂[J]. 石油学报(石油加工), 2021, 37(6): 1287-1297. |
| WANG Xiaoping, MA Huaijun, WANG Donge, et al. Preparation of the slurry bed hydrodesulfurization catalyst MoS2 promoted by dispersed cobalt by means of hydrothermal synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1287-1297. | |
| 56 | KLIMAS Vaclovas, BITTENCOURT Carla, Gintaras VALUŠIS, et al. Calcination effects of 2D molybdenum disulfides[J]. Materials Characterization, 2021, 179: 111351. |
| 57 | 马腾腾. 亲油型MoS2的制备及在渣油临氢热反应中的应用[D]. 青岛: 中国石油大学(华东), 2018. |
| MA Tengteng. Preparation of lipophilic MoS2 and its application in residual thermal reaction under hydrogen[D]. Qingdao: China University of Petroleum (East China), 2018. | |
| 58 | WEI Yunhao, HU Chengwei, MUHAMMAD Yaseen, et al. Fabrication and performance evaluation of aminopropyl triethoxysilane-dopamine-MoS2 incorporated SBS modified asphalt[J]. Construction and Building Materials, 2020, 265: 120346. |
| 59 | ZHANG Xiaoying, WANG Huaiyuan, ZHANG Xiguang, et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 239-247. |
| 60 | SHAN Changsheng, YANG Huafeng, HAN Dongxue, et al. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine[J]. Langmuir, 2009, 25(20): 12030-12033. |
| 61 | SI Yongchao, SAMULSKI Edward T. Synthesis of water soluble graphene[J]. Nano Letters, 2008, 8(6): 1679-1682. |
| 62 | HSIAO Min-Chien, LIAO Shuhang, YEN Ming-Yu, et al. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3092-3099. |
| 63 | 李奇, 陈士佳, 陈斌, 等. 改性氧化石墨烯纳米片用于海上B油田提高采收率[J]. 油田化学, 2021, 38(4): 671-676. |
| LI Qi, CHEN Shijia, CHEN Bin, et al. Research on enhanced oil recovery of modified graphene oxide nanosheet for offshore B oilfield[J]. Oilfield Chemistry, 2021, 38(4): 671-676. | |
| 64 | LI Jiaming, ZHAO Guang, SUN Ning, et al. Construction and evaluation of a graphite oxide nanoparticle-reinforced polymer flooding system for enhanced oil recovery[J]. Journal of Molecular Liquids, 2022, 367: 120546. |
| 65 | RADNIA Hamideh, RASHIDI Alimorad, SOLAIMANY NAZAR Ali Reza, et al. A novel nanofluid based on sulfonated graphene for enhanced oil recovery[J]. Journal of Molecular Liquids, 2018, 271: 795-806. |
| 66 | ZHANG Ziyan, LIU Hai, QIAO Weichuan. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124433. |
| 67 | HUANG Pan, JIA Han, WANG Tingyi, et al. Effects of modification degrees on the colloidal stability of amphiphilic Janus graphene oxide in aqueous solution with and without electrolytes[J]. Langmuir, 2021, 37(33): 10061-10070. |
| 68 | JIA Han, HUANG Pan, HAN Yugui, et al. Synergistic effects of Janus graphene oxide and surfactants on the heavy oil/water interfacial tension and their application to enhance heavy oil recovery[J]. Journal of Molecular Liquids, 2020, 314: 113791. |
| 69 | WU Hao, YI Wenyuan, CHEN Zhe, et al. Janus graphene oxide nanosheets prepared via Pickering emulsion template[J]. Carbon, 2015, 93: 473-483. |
| 70 | KIM Chang-Min, HONG Seunghyun, LI Renyuan, et al. Janus graphene oxide-doped, lamellar composite membranes with strong aqueous stability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7252-7259. |
| 71 | LIU Rui, GAO Shi, PENG Qin, et al. Experimental and molecular dynamic studies of amphiphilic graphene oxide for promising nanofluid flooding[J]. Fuel, 2022, 330: 125567. |
| 72 | 裴新琪. 驱油用Janus纳米氧化石墨烯的制备及性能研究[D]. 呼和浩特: 内蒙古大学, 2022. |
| PEI Xinqi. Preparation and properties of Janus nanographene oxide for oil displacement[D]. Hohhot: Inner Mongolia University, 2022. | |
| 73 | CAO Jie, CHEN Yingpeng, ZHANG Jian, et al. Preparation and application of nanofluid flooding based on polyoxyethylated graphene oxide nanosheets for enhanced oil recovery[J]. Chemical Engineering Science, 2022, 247: 117023. |
| 74 | 付磊, 王磊, 何磊, 等. 改性黑磷驱油剂的制备及其性能研究[J]. 南京师范大学学报(自然科学版), 2020, 43(4): 48-53. |
| FU Lei, WANG Lei, HE Lei, et al. Preparation and its properties research of modified black phosphorus oil displacement agent[J]. Journal of Nanjing Normal University (Natural Science Edition), 2020, 43(4): 48-53. | |
| 75 | 刘国鹏, 王君, 李伟, 等. 不同形态双金属氢氧化物颗粒水分散体系及其稳定的Pickering乳液[J]. 高等学校化学学报, 2013, 34(2): 386-393. |
| LIU Guopeng, WANG Jun, LI Wei, et al. Aqueous dispersions of MgAl double hydroxide particles of different forms and stabilized Pickering emulsions[J]. Chemical Journal of Chinese Universities, 2013, 34(2): 386-393. | |
| 76 | 张娜娜. 层状双金属氢氧化物在非极性介质中的剥离分散及其稳定的W/O型Pickering乳液[D]. 济南: 山东大学, 2016. |
| ZHANG Nana. Delamination of layered double hydroxides in nonpolar solvents and W/O Pickering emulsion stabilized by layered double hydroxides[D]. Jinan: Shandong University, 2016. | |
| 77 | 茹绍青, 武亚飞, 车黎明. 低过冷度石蜡Pickering乳液的制备和表征[J]. 化工学报, 2021, 72(4): 2309-2316. |
| RU Shaoqing, WU Yafei, CHE Liming. Preparation and characterization of paraffin Pickering emulsion without subcooling phenomenon[J]. CIESC Journal, 2021, 72(4): 2309-2316. | |
| 78 | ZHANG Wei, HU Zeshan, ZHANG Yaan, et al. Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: The physical and flammability properties[J]. Composites Part B: Engineering, 2013, 51: 276-281. |
| 79 | 谭军军. 氢氧化物纳米颗粒稳定的Pickering乳状液及其环境响应性[D]. 济南: 山东大学, 2011. |
| TAN Junjun. Pickering emulsions stabilized by nanoparticles of the metal hydroxide and their stimuli-responsiveness[D]. Jinan: Shandong University, 2011. | |
| 80 | WASAN Darsh T, NIKOLOV Alex D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-159. |
| 81 | SEFIANE Khellil, SKILLING Jennifer, MACGILLIVRAY Jamie. Contact line motion and dynamic wetting of nanofluid solutions[J]. Advances in Colloid and Interface Science, 2008, 138(2): 101-120. |
| 82 | WANG Mengying, CUI Zixiang, XUE Yongqiang. Determination of interfacial tension of nanomaterials and the effect of particle size on interfacial tension[J]. Langmuir, 2021, 37(49): 14463-14471. |
| 83 | ZHOU Yanxia, WU Xu, ZHONG Xun, et al. Surfactant-augmented functional silica nanoparticle based nanofluid for enhanced oil recovery at high temperature and salinity[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45763-45775. |
| 84 | 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162. |
| WANG Fuyong, YANG Kun. Influence of pore throat size distribution on oil displacement by spontaneous imbibition in tight oil reservoirs[J]. Lithologic Reservoirs, 2021, 33(2): 155-162. | |
| 85 | ZHAO Mingwei, ZHANG Yiming, WU Wei, et al. Role of ultralow interfacial tension in the imbibition of silica nanofluids[J]. Energy & Fuels, 2023, 37(17): 12879-12888. |
| 86 | LUO Dan, WANG Feng, ZHU Jingyi, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7711-7716. |
| 87 | SHIRAZI Mahsa, KORD Shahin, TAMSILIAN Yousef. Novel smart water-based titania nanofluid for enhanced oil recovery[J]. Journal of Molecular Liquids, 2019, 296: 112064. |
| 88 | 梁拓, 侯吉瑞, 屈鸣, 等. 2-D纳米黑卡室内评价及缝洞型碳酸盐岩油藏矿场应用[J]. 石油科学通报, 2020, 5(3): 402-411. |
| LIANG Tuo, HOU Jirui, QU Ming, et al. 2-D smart nanocard nanofluid laboratory evaluation and field application in fractured-vuggy carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 402-411. | |
| 89 | 蒋茜, 陈家玮, 赵田红. 埃洛石纳米流体制备及提高驱油采收率的研究[J]. 化学研究与应用, 2020, 32(1): 99-105. |
| JIANG Qian, CHEN Jiawei, ZHAO Tianhong. Study on preparation of Halloysite nanofluids and improvement of oil displacement recovery[J]. Chemical Research and Application, 2020, 32(1): 99-105. | |
| 90 | 王小聪. 纳米驱油剂驱油机理研究[D]. 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所), 2021. |
| WANG Xiaocong. Research on oil displacement mechanism of nano-oil displacement agent[D]. Langfang: University of Chinese Academy of Sciences (Institute of Porous Flow & Fluid Mechanics), 2021. | |
| 91 | 雷群, 罗健辉, 彭宝亮, 等. 纳米驱油剂扩大水驱波及体积机理[J]. 石油勘探与开发, 2019, 46(5): 937-942. |
| LEI Qun, LUO Jianhui, PENG Baoliang, et al. Mechanism of expanding swept volume by nano-sized oil-displacement agent[J]. Petroleum Exploration and Development, 2019, 46(5): 937-942. | |
| 92 | 王小聪, 雷群, 肖沛文, 等. 现场水配制纳米驱油剂及其驱油机理[J]. 石油学报, 2021, 42(3): 350-357. |
| WANG Xiaocong, LEI Qun, XIAO Peiwen, et al. Preparation of nano-oil-displacing agent with on-site water and its oil displacement mechanism[J]. Acta Petrolei Sinica, 2021, 42(3): 350-357. |
| [1] | 何小龙, 康玉堂, 邹栋, 仲兆祥. 静电纺丝纳米纤维膜呼吸防护口罩研究进展[J]. 化工进展, 2025, 44(3): 1496-1504. |
| [2] | 王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940. |
| [3] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| [4] | 吴迪, 彭明国, 谷宇, 毛林强, 张文艺. 磁性纳米破乳剂的制备及其稠油乳状液破乳性能[J]. 化工进展, 2025, 44(1): 436-444. |
| [5] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
| [6] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
| [7] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
| [8] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
| [9] | 楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156. |
| [10] | 李浩然, 王岩, 张涛, 吕莉, 唐文翔, 唐盛伟. 以Cu(Ac)2-Zn(Ac)2溶液为水相的W/O微液滴尺度的有效调控[J]. 化工进展, 2024, 43(9): 5168-5176. |
| [11] | 任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463. |
| [12] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
| [13] | 闻桂叶, 焦凤, 何永清. 磁场下微通道中磁-非磁液界面不稳定性分析[J]. 化工进展, 2024, 43(7): 3787-3797. |
| [14] | 王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856. |
| [15] | 冼学权, 杜芳黎, 刘忠林, 刘婉玉, 黎演明, 龙思宇, 黄华林. 利用PEG/Na2CO3双水相乳液法制备碳酸钙微球及其形成机理[J]. 化工进展, 2024, 43(6): 3221-3231. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |