化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3891-3909.DOI: 10.16085/j.issn.1000-6613.2023-0996
• 材料科学与技术 • 上一篇
收稿日期:
2023-06-16
修回日期:
2023-10-12
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
豆义波
作者简介:
罗丛佳(1999—),女,硕士研究生,研究方向为光催化二氧化碳还原。E-mail:congjiabjhg0728@163.com。
基金资助:
LUO Congjia(), DOU Yibo(), WEI Min
Received:
2023-06-16
Revised:
2023-10-12
Online:
2024-07-10
Published:
2024-08-14
Contact:
DOU Yibo
摘要:
光催化转化二氧化碳(CO2)为太阳能燃料或化学品被认为是缓解能源危机和温室效应的有效途径之一。为提高CO2光还原产物的活性、选择性,光催化剂的结构设计和性能调控至关重要。在众多光催化剂中,二维层状双金属氢氧化物(layered double hydroxides,LDHs)又称水滑石,因其层板阳离子组成及比例可调变、层间客体阴离子可交换等特性在光催化领域展现出广阔的应用前景。本文综述了LDHs结构调控策略用于强化光催化CO2还原的研究进展。首先介绍了光催化CO2还原的机理和LDHs光催化材料的结构特征;然后重点总结了基于缺陷工程、形貌尺寸调控和异质结构筑等策略调控LDHs光催化剂的电子结构及几何结构,优化后的LDHs通过增强光吸收、电子空穴分离迁移能力及表面还原反应能力,尤其是通过调控活性位结构降低反应势垒,实现了性能强化;最后,基于LDHs光催化剂在CO2还原领域存在的挑战,包括LDHs的设计构筑、机理探索以及多碳产物的调控提出了相关解决思路和策略。
中图分类号:
罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909.
LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909.
还原半反应 | E⊖/V |
---|---|
CO2+e- | -1.85 |
CO2+2H++2e- | -0.61 |
CO2+2H++2e- | -0.53 |
CO2+4H++4e- | -0.48 |
CO2+4H++4e- | -0.20 |
CO2+6H++6e- | -0.38 |
CO2+8H++8e- | -0.24 |
表1 CO2光还原半反应及对应的还原电势[16](相对于标准氢电极,pH=7,水溶液,25℃)
还原半反应 | E⊖/V |
---|---|
CO2+e- | -1.85 |
CO2+2H++2e- | -0.61 |
CO2+2H++2e- | -0.53 |
CO2+4H++4e- | -0.48 |
CO2+4H++4e- | -0.20 |
CO2+6H++6e- | -0.38 |
CO2+8H++8e- | -0.24 |
图10 基于LDHs材料的异质结光催化剂增强CO2光还原性能[82-83]photogenerated e-—光生电子;photogenerated h+—光生空穴;light—光;adsorption—吸附;without cocatalysts or sacrificial agents—无助催化剂或牺牲剂
1 | LIU Zhu, DENG Zhu, DAVIS S, et al. Monitoring global carbon emissions in 2022[J]. Nature Reviews Earth & Environment, 2023, 4(4): 205-206. |
2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
3 | WANG Ligang, WANG Dingsheng, LI Yadong. Single-atom catalysis for carbon neutrality[J]. Carbon Energy, 2022, 4(6): 1021-1079. |
4 | SHEN Xiaojun, ZHANG Chaofeng, HAN Buxing, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: Road to the carbon-neutral future[J]. Chemical Society Reviews, 2022, 51(5): 1608-1628. |
5 | PRAJAPATI A, SARTAPE R, ROJAS T, et al. Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions[J]. Energy & Environmental Science, 2022, 15(2): 680-692. |
6 | SONG Tao, ZHAI Zhanmiao, LIU Junchen, et al. Laboratory evaluation of a novel self-healable polymer gel for CO2 leakage remediation during CO2 storage and CO2 flooding[J]. Chemical Engineering Journal, 2022, 444: 136635. |
7 | GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578. |
8 | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
LI Zeyang, YANG Yusen, WEI Min. Structural design and performance of electrocatalysts for carbon dioxide reduction: A review[J]. Acta Chimica Sinica, 2022, 80(2): 199-213. | |
9 | GAN Wentian, GUO Xiangjun, HUANG Yun, et al. Temperature-controlled bacteria biofilm adhesion and formation for CO/CO2 bioconversion to ethanol by grafting N-isopropylacrylamide@SiC[J]. Chemical Engineering Journal, 2023, 451: 138602. |
10 | HAM R, NIELSEN C J, PULLEN S, et al. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis[J]. Chemical Reviews, 2023, 123(9): 5225-5261. |
11 | LI Xin, WEN Jiuqing, Jingxiang LOW, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Science China Materials, 2014, 57(1): 70-100. |
12 | ZHAO Yufei, WATERHOUSE G I N, CHEN Guangbo, et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO x into valuable chemical feedstocks[J]. Chemical Society Reviews, 2019, 48(7): 1972-2010. |
13 | WANG Yiou, CHEN Enqi, TANG Junwang. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis, 2022, 12(12): 7300-7316. |
14 | CHANG Xiaoxia, WANG Tuo, GONG Jinlong. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
15 | LE TRI NGUYEN Dang, KIM Younghye, HWANG Yun Jeong, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. |
16 | SUN Zhenyu, TALREJA N, TAO Hengcong, et al. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges[J]. Angewandte Chemie International Edition, 2018, 57(26): 7610-7627. |
17 | SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
18 | ZHAO Junjie, LI Yuhang, LIU Pengfei, et al. Local coulomb attraction for enhanced H2 evolution stability of metal sulfide photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 221: 152-157. |
19 | MA Xiaohong, LI Danyang, JIANG Yuheng, et al. Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2022, 628: 768-776. |
20 | HE Lang, ZHANG Wenyuan, LIU Sheng, et al. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120546. |
21 | Eun Cheol RA, KIM Kwang Young, KIM Eun Hyup, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catalysis, 2020, 10(19): 11318-11345. |
22 | MENG Aiyun, ZHANG Liuyang, CHENG Bei, et al. Dual cocatalysts in TiO2 photocatalysis[J]. Advanced Materials, 2019, 31(30): 1807660. |
23 | VIKRANT K, WEON Seunghyun, KIM Ki-Hyun, et al. Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants[J]. Applied Materials Today, 2021, 23: 100993. |
24 | CHEN Shilong, ABDEL-MAGEED A M, MOCHIZUKI C, et al. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size[J]. ACS Catalysis, 2021, 11(15): 9022-9033. |
25 | DONG Wenwen, JIA Jing, WANG Ye, et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity[J]. Chemical Engineering Journal, 2022, 438: 135622. |
26 | ZHAO Yufei, LI Bei, WANG Qiang, et al. NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light[J]. Chemical Science, 2014, 5(3): 951-958. |
27 | ZHAO Yufei, ZHAO Yunxuan, WATERHOUSE G I N, et al. Photocatalysts: Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Advanced Materials, 2017, 29(42): 1703828. |
28 | ZHANG Guanhua, ZHANG Xueqiang, MENG Yue, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
29 | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198. | |
30 | XU Ming, WEI Min. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943. |
31 | ZHANG Shiming, RONG Yiyuan, WEI Jingwen, et al. Flower-like microspheres Z-scheme Bi2Sn2O7/NiAl-LDH heterojunction for boosting photocatalytic CO2 reduction under visible light[J]. Journal of Colloid and Interface Science, 2023, 629: 604-615. |
32 | WANG Kefu, ZHANG Ling, SU Yang, et al. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(18): 8366-8373. |
33 | IGUCHI S, TERAMURA K, HOSOKAWA S, et al. Photocatalytic conversion of CO2 in water using fluorinated layered double hydroxides as photocatalysts[J]. Applied Catalysis A: General, 2016, 521: 160-167. |
34 | QIU Bocheng, DU Mengmeng, MA Yingxin, et al. Integration of redox cocatalysts for artificial photosynthesis[J]. Energy & Environmental Science, 2021, 14(10): 5260-5288. |
35 | LI Xin, YU Jiaguo, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
36 | LEI Qinqin, YUAN Huiqing, DU Jiehao, et al. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes[J]. Nature Communications, 2023, 14: 1087. |
37 | WANG Yanjie, HE Tao. Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO2 conversion[J]. Journal of Materials Chemistry A, 2021, 9(1): 87-110. |
38 | KONG Tingting, JIANG Yawen, XIONG Yujie. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation?[J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
39 | IKREEDEEGH R R, TAHIR M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels[J]. Journal of CO2 Utilization, 2021, 43: 101381. |
40 | 陈钱, 匡勤, 谢兆雄. 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021, 79(1): 10-22. |
CHEN Qian, KUANG Qin, XIE Zhaoxiong. Research progress of photocatalytic CO2 reduction based on two-dimensional materials[J]. Acta Chimica Sinica, 2021, 79(1): 10-22. | |
41 | KIM K, KIM S, MOON B, et al. Quadruple metal-based layered structure as the photocatalyst for conversion of carbon dioxide into a value added carbon monoxide with high selectivity and efficiency[J]. Journal of Materials Chemistry A, 2017, 18(5):8274-8279. |
42 | XIONG Xuyang, ZHAO Yufei, SHI Run, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals[J]. Science Bulletin, 2020, 65(12): 987-994. |
43 | SU Senda, LI Xiaoman, TAN Mengyao, et al. Enhancement of the properties of ZnAl-LDHs for photocatalytic nitrogen reduction reaction by controlling anion intercalation[J]. Inorganic Chemistry Frontiers, 2023, 10(3): 869-879. |
44 | XU Simin, PAN Ting, DOU Yibo, et al. Theoretical and experimental study on MⅡMⅢ-layered double hydroxides as efficient photocatalysts toward oxygen evolution from water[J]. The Journal of Physical Chemistry C, 2015, 119(33): 18823-18834. |
45 | ZHAO Yufei, JIA Xiaodan, WATERHOUSE G I N, et al. Layered double hydroxide nanostructured photocatalysts for renewable energy production[J]. Advanced Energy Materials, 2016, 6(6): 1501974. |
46 | JIAO Xingchen, ZHENG Kai, LIANG Liang, et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction[J]. Chemical Society Reviews, 2020, 49(18): 6592-6604. |
47 | CHEN Weiyi, HAN Bin, XIE Yili, et al. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction[J]. Chemical Engineering Journal, 2020, 391: 123519. |
48 | GUO Qiangsheng, ZHANG Qinghong, WANG Hongzhi, et al. Core-shell structured ZnO@Cu-Zn-Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction[J]. Catalysis Communications, 2016, 77: 118-122. |
49 | KHAN A ALI, TAHIR M. Construction of an S-scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light[J]. Industrial & Engineering Chemistry Research, 2021, 60(45): 16201-16223. |
50 | WANG Yifei, HAN Peng, LV Ximeng, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018, 2(12): 2551-2582. |
51 | ZHU Jiayi, LI Ting, WANG Shaohong, et al. Lattice-distortion active sites of Ni-doped CuMgFe LDH for benzotraizole degradation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107903. |
52 | TAVARES S R, NANGOI I M, LEITÃO A A. Computational investigation of two-dimensional LDHs and the modification of their electronic structure induced by defects[J]. Applied Surface Science, 2020, 532: 147159. |
53 | BAI Sha, NING Chenjun, WANG Huijuan, et al. VO4-modified layered double hydroxides nanosheets for highly selective photocatalytic CO2 reduction to C1 products[J]. Small, 2022, 18(40): e2203787. |
54 | KHAN A ALI, TAHIR M. Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4 [J]. Energy & Fuels, 2021, 35(10): 8922-8943. |
55 | ZHAO Yufei, CHEN Guangbo, BIAN Tong, et al. Photoreduction: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water[J]. Advanced Materials, 2015, 27(47): 7823. |
56 | GUO Jiaqing, SHEN Haochen, WU Guang, et al. Synergy of various defects in CoAl-layered double hydroxides photocatalyzed CO2 reduction: A first-principles study[J]. Catalysis Letters, 2023, 153(4): 933-944. |
57 | PENG Lishan, YANG Na, YANG Yuqi, et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(46): 24612-24619. |
58 | XU Jie, LIU Xiaowei, ZHOU Zijian, et al. Surface defects introduced by metal doping into layered double hydroxide for CO2 photoreduction: The effect of metal species in light absorption, charge transfer and CO2 reduction[J]. Chemical Engineering Journal, 2022, 442: 136148. |
59 | XU Dongcun, FU Gang, LI Zhongming, et al. Functional regulation of ZnAl-LDHs and mechanism of photocatalytic reduction of CO2: A DFT study[J]. Molecules, 2023, 28(2): 738. |
60 | TAN Ling, XU Simin, WANG Zelin, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie International Edition, 2019, 58(34): 11860-11867. |
61 | TAN Ling, XU Simin, WANG Zelin, et al. 600nm induced nearly 99% selectivity of CH4 from CO2 photoreduction using defect-rich monolayer structures[J]. Cell Reports Physical Science, 2021, 2(2): 100322. |
62 | YANG Junshan, LI Chao, LIANG Derui, et al. Central-collapsed structure of CoFeAl layered double hydroxides and its photocatalytic performance[J]. Journal of Colloid and Interface Science, 2021, 590: 571-579. |
63 | ZHANG Lei, XIE Zhaoxiong, GONG Jinlong. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications[J]. Chemical Society Reviews, 2016, 45(14): 3916-3934. |
64 | 杨冬, 周致远, 丁菲, 等. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38(1): 495-504. |
YANG Dong, ZHOU Zhiyuan, DING Fei, et al. Research advances of g-C3N4-based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 495-504. | |
65 | WANG Dingsheng, LI Yadong. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications[J]. Advanced Materials, 2011, 23(9): 1044-1060. |
66 | WANG Ruonan, WANG Zhen, WAN Shipeng, et al. Facile layer regulation strategy of layered double hydroxide nanosheets for artificial photosynthesis and mechanism insight[J]. Chemical Engineering Journal, 2022, 434: 134434. |
67 | BAI Sha, LI Tian, WANG Huijuan, et al. Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2021, 419: 129390. |
68 | ZHANG Lianyang, MENG Yue, PAN Guoxiang, et al. Experimental and theoretical investigations into the performance and mechanism of CO2 capture by 3D and 2D ZnAl layered double hydroxides[J]. Inorganic Chemistry, 2020, 59(23): 17722-17731. |
69 | WANG Qiang, O'HARE D. Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets[J]. Chemical Communications, 2013, 49(56): 6301-6303. |
70 | AN Jiamin, SHEN Tianyang, CHANG Wen, et al. Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO2 to CH4 with suppressing H2 evolution[J]. Inorganic Chemistry Frontiers, 2021, 8(4): 996-1004. |
71 | SHI Qunrong, HUANG Junjie, YANG Yong, et al. In-situ construction of urchin-like hierarchical g-C3N4/NiAl-LDH hybrid for efficient photoreduction of CO2 [J]. Materials Letters, 2020, 268: 127560. |
72 | Wankuen JO, MORU S, TONDA S. A green approach to the fabrication of a TiO2/NiAl-LDH core-shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels[J]. Journal of Materials Chemistry A, 2020, 8(16): 8020-8032. |
73 | FAZAL H, IQBAL A, CAO Yucai, et al. Porous urchin-like 3D Co(Ⅱ)Co(Ⅲ) layered double hydroxides for high performance heterogeneous Fenton degradation[J]. CrystEngComm, 2021, 23(5): 1234-1242. |
74 | HONG Jindui, ZHANG Wei, WANG Yabo, et al. Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: The role of carbon dioxide enrichment[J]. ChemCatChem, 2014, 6(8): 2315-2321. |
75 | WANG Mengmeng, CHEN Dongyun, LI Najun, et al. Ni-Co bimetallic hydroxide nanosheet arrays anchored on graphene for adsorption-induced enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2022, 34(28): e2202960. |
76 | TONDA S, KUMAR S, BHARDWAJ M, et al. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2667-2678. |
77 | ZHANG Liuyang, ZHANG Jianjun, YU Huogen, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
78 | LIU Jun, MA Nanke, WU Wei, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
79 | KUMAR S, ISAACS M A, TROFIMOVAITE R, et al. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction[J]. Applied Catalysis B: Environmental, 2017, 209: 394-404. |
80 | YANG Min, WANG Peng, LI Youji, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 306: 121065. |
81 | MIAO Yufang, GUO Ruitang, GU Jingwen, et al. Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction[J]. Applied Surface Science, 2020, 527: 146792. |
82 | JI Xiangyin, GUO Ruitang, TANG Junying, et al. Construction of full solar-spectrum-driven Cu2– x S/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction[J]. ACS Applied Energy Materials, 2022, 5(3): 2862-2872. |
83 | HAN Xinxin, LU Bingjie, HUANG Xin, et al. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity[J]. Applied Catalysis B: Environmental, 2022, 316: 121587. |
84 | YANG Yong, WU Jiajia, XIAO Tingting, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 255: 117771. |
85 | ZHU Biao, XU Qianxin, BAO Xiaoyan, et al. g-C3N4/CoNiFe-LDH Z-scheme heterojunction for efficient CO2 photoreduction and MB dye photodegradation[J]. Catalysis Science & Technology, 2021, 11(23): 7727-7739. |
86 | WU Yujie, GONG Yinyan, LIU Jiahao, et al. Constructing NiFe-LDH wrapped Cu2O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism[J]. Journal of Alloys and Compounds, 2020, 831: 154723. |
[1] | 郭磊, 刘枫, 郭占成. 钢铁冶金技术发展历程与新时期低碳发展路径[J]. 化工进展, 2024, 43(7): 3567-3577. |
[2] | 李明霞, 夜晨, 李姗, 梅毅, 聂云祥. 磷矿热还原制取黄磷技术现状及研究进展[J]. 化工进展, 2024, 43(7): 3578-3592. |
[3] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[4] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[5] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
[6] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
[7] | 马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449. |
[8] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[9] | 周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939. |
[10] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
[11] | 张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028. |
[12] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[13] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[14] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[15] | 冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |