化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3440-3449.DOI: 10.16085/j.issn.1000-6613.2023-0822
• 资源与环境化工 • 上一篇
收稿日期:
2023-05-17
修回日期:
2023-06-30
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
谭厚章
作者简介:
马佳慧(2000—),女,硕士研究生,研究方向为固废利用。E-mail:jiahuima@stu.xjtu.edu.cn。
基金资助:
MA Jiahui(), WANG Yibin, FENG Jingwu, TAN Houzhang(), LIN Chi
Received:
2023-05-17
Revised:
2023-06-30
Online:
2024-06-15
Published:
2024-07-02
Contact:
TAN Houzhang
摘要:
双碳背景下,CO2矿化作为一种有效固碳技术受到更多关注。本文针对6种工业含钙固废,分别采用氯化铵溶液浸出并制备矿化母液,然后在常温常压下开展直接和间接矿化模拟燃煤烟气中CO2的实验,并对6种固废的矿化效率和矿化产物进行详细分析,同时测试了浸出剂浸出含钙固废的循环能力。结果表明,由于含钙矿物相种类与含量的不同,6种固废的Ca2+浸出率介于18.88%~95.15%之间,浸出液Ca2+浓度大小为:净化灰>烧结法赤泥>燃煤飞灰2>燃煤飞灰1>烘干灰>拜耳法赤泥。氯化铵溶液循环浸出净化灰、燃煤飞灰2和烧结法赤泥后,随着循环次数的增加,燃煤飞灰2和净化灰中的间接矿化效率仅降低了1.44%和1.34%,烧结法赤泥的间接矿化效率降低了6.21%。6种固废中电石净化灰拥有最高间接矿化效率达57.60%,烧结法赤泥拥有最高直接湿法矿化效率为67.25%。CO2间接矿化的产物为粒径介于2~5μm的菱面体方解石。
中图分类号:
马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449.
MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449.
样品 | 质量分数/% | 理论矿化能力/kg CO2·(t固废)-1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Al2O3 | SO3 | K2O | Fe2O3 | MgO | Na2O | 其他 | 总和 | ||
燃煤飞灰1 | 38.18 | 33.50 | 15.90 | 5.88 | 1.32 | 1.03 | 2.04 | 0.00 | 2.15 | 100 | 253.31 |
燃煤飞灰2 | 40.69 | 32.52 | 15.20 | 6.06 | 1.89 | 1.23 | 1.17 | 0.00 | 1.24 | 100 | 235.05 |
烧结法赤泥 | 26.20 | 24.80 | 19.10 | 0.68 | 0.42 | 3.37 | 6.68 | 17.00 | 1.75 | 100 | 264.62 |
拜耳法赤泥 | 13.10 | 1.13 | 26.00 | 0.44 | 0.17 | 10.50 | 0.00 | 47.10 | 1.56 | 100 | 6.47 |
净化灰[ | 5.40 | 58.83 | 0.97 | 0.79 | 1.03 | 0.48 | 2.71 | 0.14 | 29.65 | 100 | 487.70 |
烘干灰[ | 4.09 | 14.86 | 1.65 | 3.19 | 0.15 | 1.48 | 4.87 | 0.78 | 71.09 | 100 | 129.02 |
表1 工业含钙固废的化学成分
样品 | 质量分数/% | 理论矿化能力/kg CO2·(t固废)-1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Al2O3 | SO3 | K2O | Fe2O3 | MgO | Na2O | 其他 | 总和 | ||
燃煤飞灰1 | 38.18 | 33.50 | 15.90 | 5.88 | 1.32 | 1.03 | 2.04 | 0.00 | 2.15 | 100 | 253.31 |
燃煤飞灰2 | 40.69 | 32.52 | 15.20 | 6.06 | 1.89 | 1.23 | 1.17 | 0.00 | 1.24 | 100 | 235.05 |
烧结法赤泥 | 26.20 | 24.80 | 19.10 | 0.68 | 0.42 | 3.37 | 6.68 | 17.00 | 1.75 | 100 | 264.62 |
拜耳法赤泥 | 13.10 | 1.13 | 26.00 | 0.44 | 0.17 | 10.50 | 0.00 | 47.10 | 1.56 | 100 | 6.47 |
净化灰[ | 5.40 | 58.83 | 0.97 | 0.79 | 1.03 | 0.48 | 2.71 | 0.14 | 29.65 | 100 | 487.70 |
烘干灰[ | 4.09 | 14.86 | 1.65 | 3.19 | 0.15 | 1.48 | 4.87 | 0.78 | 71.09 | 100 | 129.02 |
方式 | 样品 | 失重 百分比/% | 矿化 效率/% | 实际矿化能力 /kgCO2·(t固废)-1 |
---|---|---|---|---|
间接矿化 | 净化灰 | 43.51 | 57.60 | 281.07 |
燃煤飞灰2 | 42.57 | 15.85 | 37.40 | |
烧结法赤泥 | 41.97 | 23.45 | 61.92 | |
直接矿化 | 净化灰 | 7.42 | 5.34 | 26.06 |
燃煤飞灰2 | 8.78 | 27.34 | 64.52 | |
烧结法赤泥 | 18.68 | 67.25 | 177.53 |
表2 不同固废的CO2矿化效率
方式 | 样品 | 失重 百分比/% | 矿化 效率/% | 实际矿化能力 /kgCO2·(t固废)-1 |
---|---|---|---|---|
间接矿化 | 净化灰 | 43.51 | 57.60 | 281.07 |
燃煤飞灰2 | 42.57 | 15.85 | 37.40 | |
烧结法赤泥 | 41.97 | 23.45 | 61.92 | |
直接矿化 | 净化灰 | 7.42 | 5.34 | 26.06 |
燃煤飞灰2 | 8.78 | 27.34 | 64.52 | |
烧结法赤泥 | 18.68 | 67.25 | 177.53 |
1 | 傅桦. 全球气候变暖的成因与影响[J]. 首都师范大学学报(自然科学版), 2007, 28(6): 11-15, 21. |
FU Hua. Cause and effect of global climate warming[J]. Journal of Capital Normal University (Natural Science Edition), 2007, 28(6): 11-15, 21. | |
2 | 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25. |
Project Synthesis Report Writing Team.Comprehensive report on China's long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25. | |
3 | 康秦豪, 毛笑. 粉煤灰特性及其资源化利用中存在的问题探讨[J]. 粉煤灰综合利用, 2020, 34(4): 107-111. |
KANG Qinhao, MAO Xiao. Discussion on the characteristics of fly ash and the problems existing in its resource utilization[J]. Fly Ash Comprehensive Utilization, 2020, 34(4): 107-111. | |
4 | 郑寒冰, 林静雯, 姚胜东, 等. 电石渣处理冶金废水产物二水硫酸钙的研究[J]. 辽宁化工, 2021, 50(12): 1758-1762. |
ZHENG Hanbing, LIN Jingwen, YAO Shengdong, et al. Study on calcium sulfate dihydrate produced by the reaction of calcium carbide slag with metallurgical wastewater[J]. Liaoning Chemical Industry, 2021, 50(12): 1758-1762. | |
5 | 于目深, 王旭江, 孙德强, 等. 赤泥资源化利用现状研究[J]. 中国矿业, 2022, 31(6): 1-9. |
YU Mushen, WANG Xujiang, SUN Deqiang, et al. Study on the current situation of red mud resource utilization[J]. China Mining Magazine, 2022, 31(6): 1-9. | |
6 | ABDEL HAKIM Abou Elfotouh. Improving the vicat softening point of poly(vinyl chloride) mixtures through blending with different polymers and inorganic fillers[J]. Egyptian Journal of Chemistry, 2021. |
7 | 苏艳群, 杨扬, 刘金刚. 苛化碳酸钙制备及其加填对纸张施胶性能的影响[J]. 中国造纸学报, 2013, 28(1): 5-9. |
SU Yanqun, YANG Yang, LIU Jingang. Preparation of causticizing calcium carbonate and the effects of its application as filler on the paper sizing property[J]. Transactions of China Pulp and Paper, 2013, 28(1): 5-9. | |
8 | DE MARIA Vitor Peixoto Klienchen, DE PAIVA Fábio Friol Guedes, Flávio Camargo Cabrera, et al. Mechanical and rheological properties of partial replacement of carbon black by treated ultrafine calcium carbonate in natural rubber compounds[J]. Polymer Bulletin, 2022, 79(9): 7969-7987. |
9 | ERSOY Orkun, Dilek GÜLER, Murat RENÇBEROĞLU. Effects of grinding aids used in grinding calcium carbonate (CaCO3) filler on the properties of water-based interior paints[J]. Coatings, 2021, 12(1): 44. |
10 | DOTTA Tatiane Cristina, HAYANN Larwsk, DE PADUA ANDRADE ALMEIDA Leonardo, et al. Strontium carbonate and strontium-substituted calcium carbonate nanoparticles form protective deposits on dentin surface and enhance human dental pulp stem cells mineralization[J]. Journal of Functional Biomaterials, 2022, 13(4): 250. |
11 | LA PLANTE Erika Callagon, MEHDIPOUR Iman, SHORTT Ian, et al. Controls on CO2 mineralization using natural and industrial alkaline solids under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10727-10739. |
12 | 武鸽, 刘艳芳, 崔龙鹏, 等. 典型工业固体废物碳酸化反应性能的比较[J]. 石油学报(石油加工), 2020, 36(1): 169-178. |
WU Ge, LIU Yanfang, CUI Longpeng, et al. Comparison of the carbonation reaction properties of typical industrial solid wastes[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 169-178. | |
13 | 王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327. |
WANG Zhonghui, SU Sheng, YIN Zijun, et al. Research progress of CO2 mineralization and integrated absorption-mineralization(IAM) method[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. | |
14 | LI Wenxiu, HUANG Yan, WANG Tao, et al. Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralization[J]. Journal of Cleaner Production, 2022, 363: 132463. |
15 | RAGIPANI Raghavendra, SREENIVASAN Keerthana, ANEX Robert P, et al. Direct air capture and sequestration of CO2 by accelerated indirect aqueous mineral carbonation under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7852-7861. |
16 | 纪龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京: 中国矿业大学(北京), 2018. |
JI Long. Study on sequestration of carbon dioxide by mineralization of fly ash[D].Beijing: China University of Mining & Technology, Beijing, 2018. | |
17 | 叶龙泼, 李爽, 岳海荣, 等. 富钙溶液中萃取与反应耦合强化CO2矿化过程[J]. 化工学报, 2015, 66(9): 3511-3517. |
YE Longpo, LI Shuang, YUE Hairong, et al. Process intensification by coupling reaction and extraction for CO2 mineralization in Ca2+-rich solution[J]. CIESC Journal, 2015, 66(9): 3511-3517. | |
18 | WANG Xiaolong, Mercedes MAROTO-VALER M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. |
19 | DING Wenjin, CHEN Qiuju, SUN Hongjuan, et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization, 2019, 34: 507-515. |
20 | Hsing-Jung HO, IIZUKA Atsushi, SHIBATA Etsuro, et al. Circular indirect carbonation of coal fly ash for carbon dioxide capture and utilization[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108269. |
21 | HOSSEINI Tahereh, SELOMULYA Cordelia, HAQUE Nawshad, et al. Indirect carbonation of Victorian brown coal fly ash for CO2 sequestration: Multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
22 | SAID Arshe, LAUKKANEN Timo, Mika JÄRVINEN. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag[J]. Applied Energy, 2016, 177: 602-611. |
23 | 王子心. 电石渣资源化回收利用工艺研究[D]. 北京: 北京化工大学, 2021. |
WANG Zixin. Study on recycling technology of carbide slag[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
24 | WANG Yibin, LI Liangyu, AN Qiwei, et al. Investigation on ash fusion temperature and slagging characteristic of Zhundong coal blends, Part 1: The effect of two solid wastes from calcium carbide production[J]. Fuel Processing Technology, 2022, 228: 107138. |
25 | OWAIS Muhammad, YAZDANI Maryam R, Mika JÄRVINEN. Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags[J]. Chemical Engineering and Processing: Process Intensification, 2021, 166: 108489. |
26 | XIAO Yujia, TIONG Michelle, MO Kim Hung, et al. Recycling Bayer and sintering red muds in brick production: A review[J]. Journal of Zhejiang University: SCIENCE A, 2022, 23(5): 335-357. |
27 | 唐辉. 利用炼钢厂废渣碳酸化固定CO2的研究[D]. 武汉: 武汉科技大学, 2012. |
TANG Hui. Study on CO2 immobilization by carbonation of steel plant waste residue[D]. Wuhan: Wuhan University of Science and Technology, 2012. | |
28 | 于亚杰. 方解石制备碳酸钙晶须的影响因素及机理研究[D]. 沈阳: 沈阳化工大学, 2021. |
YU Yajie. Study on influencing factors and mechanism of calcium carbonate whiskers prepared from calcite[D]. Shenyang: Shenyang University of Chemical Technology, 2021. | |
29 | 王鑫, 韦明, 刘琨. 球霰石型碳酸钙的调控制备研究进展[J]. 硅酸盐通报, 2022, 41(8): 2860-2870, 2878. |
WANG Xin, WEI Ming, LIU Kun. Research progress on control and preparation of vaterite-type calcium carbonate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2860-2870, 2878. | |
30 | 王亚光. 赤泥-粉煤灰-脱硫石膏新型胶凝材料微结构演变与复合协同效应[D]. 北京: 北京科技大学, 2022. |
WANG Yaguang. Microstructure evolution and composite synergistic effect of a new cementitious material of red mud-fly ash-desulfurization gypsum[D]. Beijing: University of Science and Technology Beijing, 2022. | |
31 | 伊元荣, 韩敏芳, 于立安. 利用赤泥捕获CO2反应特性[J]. 化工学报, 2011, 62(9): 2635-2642. |
YI Yuanrong, HAN Minfang, YU Lian. Reaction characteristics of CO2 captured by red mud[J]. CIESC Journal, 2011, 62(9): 2635-2642. | |
32 | 曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57-60. |
CAO Ruixue, KANG Zeshuang, LIU Wanchao, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57-60. | |
33 | 包炜军, 李会泉, 张懿. 温室气体CO2矿物碳酸化固定研究进展[J]. 化工学报, 2007, 58(1): 1-9. |
BAO Weijun, LI Huiquan, ZHANG Yi. Progress in carbon dioxide sequestration by mineral carbonation[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(1): 1-9. |
[1] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[2] | 周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939. |
[3] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
[4] | 张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028. |
[5] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[6] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[7] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[8] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[9] | 解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722. |
[10] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[11] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[12] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[13] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[14] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[15] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |