化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3578-3592.DOI: 10.16085/j.issn.1000-6613.2023-2193
• 专栏:热化学反应工程技术 • 上一篇
李明霞1,2,3(), 夜晨1,2,3, 李姗1,2,3, 梅毅1,2,3(), 聂云祥1,2,3()
收稿日期:
2023-12-13
修回日期:
2024-03-19
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
梅毅,聂云祥
作者简介:
李明霞(1998—),女,博士研究生,研究方向为磷化工节能减排。E-mail:2781158796@qq.com。
基金资助:
LI Mingxia1,2,3(), YE Chen1,2,3, LI Shan1,2,3, MEI Yi1,2,3(), NIE Yunxiang1,2,3()
Received:
2023-12-13
Revised:
2024-03-19
Online:
2024-07-10
Published:
2024-08-14
Contact:
MEI Yi, NIE Yunxiang
摘要:
黄磷生产属于“高能耗”和“高污染”行业,电炉法是目前唯一的工业化生产黄磷的方法,但存在电耗高、黄磷尾气难以资源化利用等问题。在“碳达峰、碳中和”背景下,深入打好污染防治攻坚战,实现减污降碳协同增效是必然选择,因此,黄磷生产技术亟待创新。本文总结了磷矿热还原制取黄磷的机制,归纳了SiO2、Al2O3和MgO助熔剂以及炭质还原剂活性对磷矿还原的影响,阐述了高炉法、电炉法、流态化法、熔融电解法、低温碳热还原磷酸法、硅热法和磷煤耦合联产黄磷和一氧化碳法制取黄磷的技术原理、特点以及存在的问题。指出未来黄磷生产技术的总体要求是节能降耗和碳资源高效利用,低品位磷矿利用技术和低磷废弃物中回收磷技术的开发对实现磷资源的可持续开发利用具有重要意义。
中图分类号:
李明霞, 夜晨, 李姗, 梅毅, 聂云祥. 磷矿热还原制取黄磷技术现状及研究进展[J]. 化工进展, 2024, 43(7): 3578-3592.
LI Mingxia, YE Chen, LI Shan, MEI Yi, NIE Yunxiang. Current status and research progress of thermal reduction technology for producing yellow phosphorus from phosphate rock[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3578-3592.
磷矿来源 | 温度范围 | 反应级数 | 磷矿还原反应活化能/kJ·mol-1 | 参考文献 |
---|---|---|---|---|
云南 | 1300~1450℃ | 介于一级二级之间 | 192.2 | [ |
贵州 | 800~1200℃ | 一级 | 77±1 | [ |
湖北 | 1200~1300℃ | — | 282.7 | [ |
云南 | 1250~1400℃ | 变级 | 188.96 | [ |
湖北 | 1450~1550℃ | 一级 | 225.106 | [ |
湖北 | 1300~1450℃ | 介于一级二级之间 | 184.644 | [ |
表1 不同反应条件下的磷矿反应动力学
磷矿来源 | 温度范围 | 反应级数 | 磷矿还原反应活化能/kJ·mol-1 | 参考文献 |
---|---|---|---|---|
云南 | 1300~1450℃ | 介于一级二级之间 | 192.2 | [ |
贵州 | 800~1200℃ | 一级 | 77±1 | [ |
湖北 | 1200~1300℃ | — | 282.7 | [ |
云南 | 1250~1400℃ | 变级 | 188.96 | [ |
湖北 | 1450~1550℃ | 一级 | 225.106 | [ |
湖北 | 1300~1450℃ | 介于一级二级之间 | 184.644 | [ |
磷矿石来源 | 实验条件 | 助熔剂 | 硅钙质量比 | 磷矿还原率 | 参考文献 |
---|---|---|---|---|---|
云南,四川 | 1350℃,100min | 硅石 | 1.1,1.29,1.1 | 84.1%,78.9%,91.6% | [ |
云南,湖北 | 1450℃,60min | 硅石 | 2.57 | 98% | [ |
云南 | 1250℃,60min,1Pa(真空) | 硅石 | 0.86 | 33.09% | [ |
贵州 | 1400℃,40min | 钾页岩 | 1.02 | 96.47% | [ |
贵州 | 1400℃,40min | 钾长石 | 1.02 | 96.71% | [ |
贵州 | 1400℃,40min | 霞石 | 1.02 | 96.12% | [ |
云南 | 1700℃,20min | 煤灰渣 | 0.8 | 98.9% | [ |
云南 | 1430℃,60min | 硅石 | 2.6 | 80% | [ |
云南 | 1400℃,120min | 硅石 | 0.76 | 60% | [ |
云南 | 1400℃,40min | 硅石 | 1.63 | 83.98% | [ |
表2 不同条件下硅源对磷矿还原反应的影响
磷矿石来源 | 实验条件 | 助熔剂 | 硅钙质量比 | 磷矿还原率 | 参考文献 |
---|---|---|---|---|---|
云南,四川 | 1350℃,100min | 硅石 | 1.1,1.29,1.1 | 84.1%,78.9%,91.6% | [ |
云南,湖北 | 1450℃,60min | 硅石 | 2.57 | 98% | [ |
云南 | 1250℃,60min,1Pa(真空) | 硅石 | 0.86 | 33.09% | [ |
贵州 | 1400℃,40min | 钾页岩 | 1.02 | 96.47% | [ |
贵州 | 1400℃,40min | 钾长石 | 1.02 | 96.71% | [ |
贵州 | 1400℃,40min | 霞石 | 1.02 | 96.12% | [ |
云南 | 1700℃,20min | 煤灰渣 | 0.8 | 98.9% | [ |
云南 | 1430℃,60min | 硅石 | 2.6 | 80% | [ |
云南 | 1400℃,120min | 硅石 | 0.76 | 60% | [ |
云南 | 1400℃,40min | 硅石 | 1.63 | 83.98% | [ |
项目 | 电炉法 | 高炉法 | 流态化法 | 熔融电解法 | 低温碳热还原磷酸法 | 硅热法制磷 | 磷煤耦合联产制磷法 |
---|---|---|---|---|---|---|---|
反应温度/℃ | 1400~1500 | — | — | 850 | 1000 | 1250 | 1400~1800 |
磷还原电耗/kW·h·t-1 | 13500~15500 | 0 | — | 8900 | — | — | 0 |
磷源 | 中、高品位磷矿 | 中、高品位磷矿 | 中、高品位磷矿 | 磷矿、污泥等含磷废弃物 | 含磷废渣 | 中、低品位磷矿 | 低、中、高品位磷矿 |
工艺复杂程度 | 简单 | 简单 | 较复杂 | 较复杂 | 简单 | 简单 | 较复杂 |
磷收率 | ≥95% | <50% | >95% | — | 50% | ≥80% | ≥95% |
技术现状 | 已工业化 | 已淘汰 | 实验室研究 | 实验室研究 | 实验室研究 | 实验室研究 | 实验室研究 |
表3 不同黄磷生产方法特点比较
项目 | 电炉法 | 高炉法 | 流态化法 | 熔融电解法 | 低温碳热还原磷酸法 | 硅热法制磷 | 磷煤耦合联产制磷法 |
---|---|---|---|---|---|---|---|
反应温度/℃ | 1400~1500 | — | — | 850 | 1000 | 1250 | 1400~1800 |
磷还原电耗/kW·h·t-1 | 13500~15500 | 0 | — | 8900 | — | — | 0 |
磷源 | 中、高品位磷矿 | 中、高品位磷矿 | 中、高品位磷矿 | 磷矿、污泥等含磷废弃物 | 含磷废渣 | 中、低品位磷矿 | 低、中、高品位磷矿 |
工艺复杂程度 | 简单 | 简单 | 较复杂 | 较复杂 | 简单 | 简单 | 较复杂 |
磷收率 | ≥95% | <50% | >95% | — | 50% | ≥80% | ≥95% |
技术现状 | 已工业化 | 已淘汰 | 实验室研究 | 实验室研究 | 实验室研究 | 实验室研究 | 实验室研究 |
1 | 钟景绍. 基于水泥窑协同处置的黄磷渣资源化利用研究[C]//中国环境科学学会环境工程分会. 中国环境科学学2022年科学技术年会——环境工程技术创新与应用分会场论文集(三). 北京: 《工业建筑》杂志社有限公司, 2022: 5. |
ZHONG Jingshao. Research on resource utilization of yellow phosphorus slag based on cement kiln co-disposal[C].// Environmental Engineering Branch of the Chinese Society of Environmental Science. Proceedings of the 2022 Annual Scientific and Technical Conference of the Chinese Society of Environmental Sciences-Environmental Engineering Technology Innovation and Application Session (Ⅲ). Beijing: Industrial Building Magazine Co., 2022: 5. | |
2 | YU Huafang, YOSHIDA Ryoko, SASAKI Yasushi, et al. Yellow phosphorus production from phosphoric acid by carbothermic reduction[M]//The Minerals, Metals & Materials Series. Cham: Springer International Publishing, 2022: 297-302. |
3 | Anders NÄTTORP, KABBE Christian, MATSUBAE Kazuyo, et al. Development of phosphorus recycling in Europe and Japan[M]//Phosphorus Recovery and Recycling. Singapore: Springer Singapore, 2018: 3-27. |
4 | YU Huafang, LU Xin, MIKI Takahiro, et al. Sustainable phosphorus supply by phosphorus recovery from steelmaking slag: A critical review[J]. Resources, Conservation and Recycling, 2022, 180: 106203. |
5 | 孙志立, 杜建学. 电热法制磷[M]. 北京: 冶金工业出版社, 2010. |
SUN Zhili, DU Jianxue. Furnace-process yellow phosphorous[M]. Beijing: Metallurgical Industry Press, 2010. | |
6 | 人力资源和社会保障部教材办公室. 黄磷及热法磷酸制作工[M]. 北京: 中国劳动社会保障出版社, 2009. |
Office of Teaching Materials, Ministry of Human Resources and Social Security. Yellow phosphorus and thermal phosphoric acid maker[M]. Beijing: China Labor and Social Security Press, 2009. | |
7 | WANG Xueqian, NING Ping, CHEN Wei. Studies on purification of yellow phosphorus off-gas by combined washing, catalytic oxidation, and desulphurization at a pilot scale[J]. Separation and Purification Technology, 2011, 80(3): 519-525. |
8 | 孙志立, 黄平, 牛仁杰, 等. 碳达峰、碳中和背景下磷化工产业绿色低碳节能减排的研究与探讨[J]. 肥料与健康, 2022, 49(2): 8-12. |
SUN Zhili, HUANG Ping, NIU Renjie, et al. Research and discussion on green and low-carbon energy saving and emission reduction of phosphorus chemical industry under the background of peak carbon dioxide emissions and carbon neutrality[J]. Fertilizer & Health, 2022, 49(2): 8-12. | |
9 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
10 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
11 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
12 | 梅毅. 节能减排、循环经济是热法基础磷加工发展的必由之路[J]. 磷肥与复肥, 2016, 31(7): 2. |
MEI Yi. Energy saving and emission reduction, circular economy is the road to the development of thermal basic phosphorus processing[J]. Phosphate & Compound Fertilizer, 2016, 31(7): 2. | |
13 | 姚远, 井红权, 尹玉婷, 等. “双碳”背景下热法黄磷生产技术研究现状及建议[J]. 化工进展, 2024, 43(3): 2104-2116. |
YAO Yuan, JING Hongquan, YIN Yuting, et al. Research status and suggestions of yellow hosphorus production technology by thermal processing under peak carbon dioxide emission and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 2104-2116. | |
14 | 马超, 胡彪, 吴元欣, 等. 低品位磷矿熔融还原反应动力学研究[J]. 化工矿物与加工, 2014, 43(3): 5-8. |
MA Chao, HU Biao, WU Yuanxin, et al. Study on reaction kinetics in smelting reduction of lowgrade phosphate ores[J]. Industrial Minerals & Processing, 2014, 43(3): 5-8. | |
15 | 齐庆杰, 刘建忠, 王继仁, 等. 氟磷灰石高温热分解特性与机理[J]. 辽宁工程技术大学学报, 2003, 22(2): 145-147. |
QI Qingjie, LIU Jianzhong, WANG Jiren, et al. Study on pyrolysis and kinetics of fluorine emission of fluorapatite at high temperature[J]. Journal of Liaoning Technical University, 2003, 22(2): 145-147. | |
16 | 孙永升, 栗艳锋, 王定政, 等. 氟磷灰石还原过程热力学分析[J]. 东北大学学报(自然科学版), 2019, 40(6): 875-880. |
SUN Yongsheng, LI Yanfeng, WANG Dingzheng, et al. Thermodynamic analysis of the reduction process of fluorapatite[J]. Journal of Northeastern University (Natural Science), 2019, 40(6): 875-880. | |
17 | 栗艳锋, 孙永升, 韩跃新, 等. 氟磷灰石还原的影响因素和等温动力学[J]. 中国有色金属学报, 2020, 30(2): 431-437. |
LI Yanfeng, SUN Yongsheng, HAN Yuexin, et al. Influencing factors and isothermal kinetics of fluorapatite reduction[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(2): 431-437. | |
18 | 曹任飞. 掺杂物对磷矿碳热还原反应影响基础研究[D]. 昆明: 昆明理工大学, 2019. |
CAO Renfei. Basic study on that effect of dopant on carbothermal reduction reaction of phosphate rock[D]. Kunming: Kunming University of Science and Technology, 2019. | |
19 | 李茜, 胡彪, 吴元欣, 等. 熔融法还原中低品位磷矿的工艺及动力学[J]. 高校化学工程学报, 2014, 28(4): 905-910. |
LI Xi, HU Biao, WU Yuanxin, et al. Process parameters and kinetics of smelting reduction technology for low-grade phosphate ore reduction[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(4): 905-910. | |
20 | 李茜, 胡彪, 吴元欣, 等. 固态碳熔融还原磷矿反应动力学[J]. 化学工程, 2013, 41(4): 53-56. |
LI Xi, HU Biao, WU Yuanxin, et al. Reaction kinetics of phosphate ore with carbon by smelting reduction technology[J]. Chemical Engineering (China), 2013, 41(4): 53-56. | |
21 | 胡彪. 磷矿熔态还原工艺优化及机理研究[D]. 武汉: 武汉工程大学, 2014. |
HU Biao. Study on process optimization and mechanism of phosphate ore smelting reduction[D]. Wuhan: Wuhan Institute of Technology, 2014. | |
22 | 胡彪, 李茜, 胡意, 等. 磷矿熔融还原工艺的优化研究[J]. 化工矿物与加工, 2012, 41(12): 1-3. |
HU Biao, LI Xi, HU Yi, et al. Study on technological optimization of phosphate ores by smelting reduction[J]. Industrial Minerals & Processing, 2012, 41(12): 1-3. | |
23 | 朱志伟, 唐远, 李智力, 等. 电炉法制磷过程热力学及动力学分析[J]. 过程工程学报, 2022, 22(7): 927-934. |
ZHU Zhiwei, TANG Yuan, LI Zhili, et al. Thermodynamics and kinetics analysis of phosphorus production by electric-furnace method[J]. The Chinese Journal of Process Engineering, 2022, 22(7): 927-934. | |
24 | 鲍晓军, 袁孝惇, 王树民. 磷矿石熔态还原动力学及反应机理的研究[J]. 化肥工业, 1987, 14(6): 2-5. |
BAO Xiaojun, YUAN Xiaodun, WANG Shumin. Study on kinetics and reaction mechanism of molten reduction of phosphate ore[J]. Journal of Chemical Fertilizer Industry, 1987, 14(6): 2-5. | |
25 | 李鹏飞. 中低品位磷矿热解还原过程机理研究[D]. 武汉: 武汉工程大学, 2020. |
LI Pengfei. Study on mechanism of pyrolysis and reduction process of medium and low grade phosphate rock[D]. Wuhan: Wuhan Institute of Technology, 2020. | |
26 | 贡长生. 现代磷化工技术和应用[M]. 北京: 化学工业出版社, 2013. |
GONG Changsheng. Modern phosphorus chemical technology and application[M]. Beijing: Chemical Industrial Press, 2013. | |
27 | 魏晓丹, 魏广学, 徐建华, 等. 磷矿石还原新工艺研究[J]. 硫磷设计, 1995(3): 5-10. |
WEI Xiaodan, WEI Guangxue, XU Jianhua, et al. Study on new reduction process of phosphate ore[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 1995(3): 5-10. | |
28 | 刘予成, 陈秀敏, 李秋霞, 等. 氟磷酸钙真空碳热还原反应机理的分子动力学研究[J]. 真空科学与技术学报, 2017, 37(1): 89-93. |
LIU Yucheng, CHEN Xiumin, LI Qiuxia, et al. Molecular dynamics simulation of vacuum carbon thermal reduction of calcium fluoride phosphate[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(1): 89-93. | |
29 | 李秋霞, 夏利梅, 李琮, 等. 真空法由磷矿石一步制备红磷[C]//中国真空学会真空冶金专业委员会, 沈阳市真空学会. 真空技术与表面工程——第九届真空冶金与表面工程学术会议论文集. 北京: 电子工业出版社, 2009: 149-151. |
LI Qiuxia, XIA Limei, LI Cong, et al. One-step preparation of red phosphorus from phosphate ore by vacuum method[C]//Vacuum Metallurgy Committee of China Vacuum Society, Shenyang Vacuum Society. Vacuum Technology and Surface Engineering-Proceedings of the 9th Vacuum Metallurgy and Surface Engineering Conference. Beijing: Publishing House of Electronics Industry, 2009: 149-151. | |
30 | 刘予成, 李秋霞, 邱臻哲, 等. SiO2对氟磷酸钙真空碳热还原反应的影响[J]. 真空科学与技术学报, 2013, 33(3): 293-296. |
LIU Yucheng, LI Qiuxia, QIU Zhenzhe, et al. Mechanisms SiO2 on the fluoraptite by carbothermic reduction reactin in vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(3): 293-296. | |
31 | 李贤粉, 武庆慧, 吕晓东, 等. SiO2/CaO比对中低品位磷矿真空碳热还原的影响[J]. 真空科学与技术学报, 2021, 41(7): 687-693. |
LI Xianfen, WU Qinghui, LV Xiaodong, et al. Effect of SiO2/CaO ratio on thermal carbon reduction of low-grade phosphate ore in low vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(7): 687-693. | |
32 | 李艳. 低品位磷矿热解还原过程热分析及其动力学研究[D]. 武汉: 武汉工程大学, 2019. |
LI Yan. Thermal analysis and kinetic study on pyrolysis and reduction process of low-grade phosphate rock[D]. Wuhan: Wuhan Institute of Technology, 2019. | |
33 | 郑光亚, 曹任飞, 夏举佩, 等. 不同掺杂剂对磷矿碳热还原反应的影响[J]. 化工进展, 2020, 39(12): 5112-5118. |
ZHENG Guangya, CAO Renfei, XIA Jupei, et al. Effect of different dopants on the carbothermal reduction of phosphate rock[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5112-5118. | |
34 | 李银. 助熔剂对磷矿碳热还原反应的工艺及机理研究[D]. 昆明: 昆明理工大学, 2018. |
LI Yin. Process and mechanism research on phosphorite carbothermal reduction reaction by flux[D]. Kunming: Kunming University of Science and Technology, 2018. | |
35 | 聂云祥, 李明霞, 梅毅, 等. 煤灰渣在磷矿还原制取黄磷中的应用、磷矿还原制取黄磷的方法: CN116654885A[P]. 2023-08-29. |
NIE Yunxiang, LI Mingxia, MEI Yi, et al. Application of coal ash and slag in preparation of yellow phosphorus by reducing phosphorite and method for preparing yellow phosphorus by reducing phosphorite: CN116654885A[P]. 2023-08-29. | |
36 | 胡彪, 马超, 桂坤, 等. 无机添加剂对磷矿石熔态还原反应的影响[J]. 化工矿物与加工, 2014, 43(6): 1-2. |
HU Biao, MA Chao, GUI Kun, et al. Effect of inorganic additives on smelting reduction of phosphate rock[J]. Industrial Minerals & Processing, 2014, 43(6): 1-2. | |
37 | 赵禺, 夏举佩, 曹任飞, 等. 钾系添加剂促进磷矿碳热还原的可行性研究[J]. 硅酸盐通报, 2018, 37(12): 3983-3988. |
ZHAO Yu, XIA Jupei, CAO Renfei, et al. Feasibility study on potassium additive promoting carbothermal reduction of phosphate rocks[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3983-3988. | |
38 | 朱晁莹, 屈敏, 李银, 等. 助熔剂硅石及钾页岩对磷矿碳热还原反应的影响[J]. 硅酸盐通报, 2018, 37(9): 2908-2912. |
ZHU Chaoying, QU Min, LI Yin, et al. Effect of silica and potassium shale as the flux agents on the phosphorus carburizing reduction reaction[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2908-2912. | |
39 | R B 伯尔特, J C 巴尔伯, 刘自强, 等. 电炉法生产元素磷[M]. 北京: 化学工业出版社, 1965. |
BERT R B, BARBER J C, LIU Ziqiang, et al. Production of elemental phosphorus by the electric furnace method[M]. Beijing: Chemical Industry Press, 1965. | |
40 | 汤建伟, 兰方杰, 化全县, 等. 不同助熔剂对磷矿熔融特性影响研究[J]. 化工矿物与加工, 2016, 45(9): 9-12. |
TANG Jianwei, LAN Fangjie, HUA Quanxian, et al. Influence of different fluxing agents on melting characteristics of phosphate rock[J]. Industrial Minerals & Processing, 2016, 45(9): 9-12. | |
41 | 兰方杰. 硅-铝-镁氧化物助溶剂对磷矿熔融特性影响研究[D]. 郑州: 郑州大学, 2016. |
LAN Fangjie. Study on the influence of silicon-aluminum-magnesium oxide flux on the melting characteristics of phosphate rock[D]. Zhengzhou: Zhengzhou University, 2016. | |
42 | 穆刘森. 磷矿石碳热还原过程元素迁移变化规律及残渣特性研究[D]. 昆明: 昆明理工大学, 2021. |
MU Liuseng. Study on the change rule of elemental migration and residue characterization during carbothermal reduction of phosphorite[D]. Kunming: Kunming University of Science and Technology, 2021. | |
43 | 王典. 高炉法制备磷酸的工艺研究和开发[D]. 郑州: 郑州大学, 2011. |
WANG Dian. Research and development of phosphoric acid preparation by blast furnace method[D]. Zhengzhou: Zhengzhou University, 2011. | |
44 | 曹任飞, 夏举佩, 李宛霖, 等. 碱金属碳酸盐对磷矿碳热还原反应的影响研究[J]. 高校化学工程学报, 2018, 32(3): 568-576. |
CAO Renfei, XIA Jupei, LI Wanlin, et al. Effects of alkali metal carbonates on carbothermal reduction of phosphate rock[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 568-576. | |
45 | 季士浩. 中国黄磷工业简史及其发展概况——为纪念用电炉法生产黄磷100周年而作[J]. 磷肥与复肥, 1988(3): 73-74. |
JI Shihao. A brief history and development overview of China's yellow phosphorus industry—In commemoration of the 100th anniversary of yellow phosphorus production by electric furnace method[J]. Phosphate & Compound Fertilizer, 1988(3): 73-74. | |
46 | 孙志立. 我国黄磷工业回顾及“十三五”发展思路[J]. 磷肥与复肥, 2016, 31 (10): 1-8. |
SUN Zhili. Retrospect of yellow phosphorus industry in China and development thinking in the 13th Five-year Plan[J]. Phosphate & Compound Fertilizer, 2016, 31(10): 1-8. | |
47 | 南京化学工业公司磷肥厂. 电炉法生产黄磷[M]. 北京: 化学工业出版社, 1978. |
Nanjing Chemical Industry Company Phosphate Fertilizer Plant. Production of yellow phosphorus by electric furnace method[M]. Beijing: Chemical Industry Press, 1978. | |
48 | 高永峰. 我国磷化工行业发展现状、趋势及创新[J]. 磷肥与复肥, 2015, 30 (12): 1-7. |
GAO Yongfeng. Development status, trend and innovation of phosphorus chemical industry in China[J]. Phosphate & Compound Fertilizer, 2015, 30 (12): 1-7. | |
49 | 孙志立, 王敏忠. 浅析多电极制磷电炉设计运行与现状[J]. 硫磷设计与粉体工程, 2008(5): 23-29, 51-52. |
SUN Zhili, WANG Minzhong. Analysis of design, operation and current status of multi-electrode electrical phosphorus furnace[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2008(5): 23-29, 51-52. | |
50 | 问立宁, 孙志立. 我国黄磷改革开放40年技术创新世界瞩目[J]. 磷肥与复肥, 2018, 33(12): 35-37, 58. |
WEN Lining, SUN Zhili. Innovative production technology of yellow phosphorus in China during 40 years of reform and opening up drawing attention of the world[J]. Phosphate & Compound Fertilizer, 2018, 33(12): 35-37, 58. | |
51 | 朱志伟, 李智力, 姚远, 等. 磷矿热法处理工艺分析及展望[J]. 磷肥与复肥, 2020, 35(11): 27-29. |
ZHU Zhiwei, LI Zhili, YAO Yuan, et al. Analysis and prospect of thermal treatment process of phosphate rock[J]. Phosphate & Compound Fertilizer, 2020, 35(11): 27-29. | |
52 | 薛生晖. 回转窑法磷酸制备新工艺的研究现状和前景[J]. 矿冶工程, 1995, 15(4): 48-51. |
XUE Shenghui. Research status and prospect of new process of phosphoric acid preparation by rotary kiln method[J]. Mining and Metallurgical Engineering, 1995, 15(4): 48-51. | |
53 | 胡绵超. 高炉法生产黄磷技术前景分析[J]. 磷肥与复肥, 2017, 32(11): 24-25. |
HU Mianchao. Prospect analysis of yellow phosphorus production with blast furnace[J]. Phosphate & Compound Fertilizer, 2017, 32(11): 24-25. | |
54 | 窦林萍, 杨富, 瞿建祥. 高炉炼磷发展过程及其前景[J]. 山西化工, 1991, 11(4): 29-31. |
DOU Linping, YANG Fu, QU Jianxiang. Development process of blast furnace phosphorus refining and its prospects[J]. Shanxi Chemical Industry, 1991, 11(4): 29-31. | |
55 | 陈善继. 我国黄磷产业现状及发展方向综述[J]. 硫磷设计与粉体工程, 2006(4): 10-20, 49. |
CHEN Shanji. Overview of current status and development trend of the yellow phosphorus industry in China[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2006(4): 10-20, 49. | |
56 | 唐安江, 蒋东海, 陈虹锦, 等. 黄磷电炉数值模拟[J]. 磷肥与复肥, 2011, 26(6): 42-45. |
TANG Anjiang, JIANG Donghai, CHEN Hongjin, et al. Numerical simulation of phosphorus furnace[J]. Phosphate & Compound Fertilizer, 2011, 26(6): 42-45. | |
57 | 覃扬颂, 王重华, 黄小凤, 等. 熔融态黄磷炉渣的综合利用现状[J]. 化工进展, 2012, 31(10): 2319-2323. |
QIN Yangsong, WANG Zhonghua, HUANG Xiaofeng, et al. Utilization of melting yellow phosphor furnace slag[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2319-2323. | |
58 | 梅毅, 聂云祥, 何德东, 等. 一种微波辅助加热黄磷炉气干法净化的方法和装置: CN108211623B[P]. 2020-10-27. |
MEI Yi, NIE Yunxiang, HE Dedong, et al. Yellow phosphorus furnace gas dry-method purifying method through microwave auxiliary heating and apparatus thereof: CN108211623B[P]. 2020-10-27. | |
59 | 梅毅, 侯屹东, 聂云祥, 等. 低温干法净化黄磷炉气的装置及方法: CN110559783B[P]. 2021-03-23. |
MEI Yi, HOU Yidong, NIE Yunxiang, et al. Device and method for low-temperature dry-process purification of yellow phosphorus furnace gas: CN110559783B[P]. 2021-03-23. | |
60 | 梅毅, 杨亚斌, 何锦林. 一种黄磷漂洗系统与泥磷连续回收的一体化装置及方法: CN112499605A[P]. 2021-03-16. |
MEI Yi, YANG Yabin, HE Jinlin. Integrated device and method for yellow phosphorus rinsing system and continuous recovery of phosphorus sludge: CN112499605A[P]. 2021-03-16. | |
61 | 吴祥, 杨胜军. 一种泥磷回收精制黄磷的方法: CN105984860A[P]. 2016-10-05. |
WU Xiang, YANG Shengjun. Method for recovering and refining yellow phosphorus by phosphorus sludge: CN105984860A[P]. 2016-10-05. | |
62 | 梅毅, 李福金, 聂云祥, 等. 磷矿粉脱除黄磷尾气燃气锅炉中硫、磷、氮氧化物的方法及其系统: CN116510497A[P]. 2023-08-01. |
MEI Yi, LI Fujin, NIE Yunxiang, et al. Method and system for removing sulfur, phosphorus and nitrogen oxides in yellow phosphorus tail gas gas-fired boiler from ground phosphate rock: CN116510497A[P]. 2023-08-01. | |
63 | 刘志强. 生物质和煤流化床共气化的试验研究[D]. 保定: 华北电力大学(保定), 2009. |
LIU Zhiqiang. Experimental study on co-gasification of biomass and coal in fluidized bed[D]. Baoding: North China Electric Power University, 2009. | |
64 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
JIN Yong. Fluidization engineering principles[M]. Beijing: Tsinghua University Press, 2001. | |
65 | KANG Mingxiong, TIAN Haoyi, WU Yuanxin. Study on thermal reduction of phosphate ore by carbon in the fluidized bed reactor[J]. Advanced Materials Research, 2012, 550/551/552/553: 934-938. |
66 | 杨仟. 固定床与流化床还原磷矿石的对比研究[D]. 武汉: 武汉工程大学, 2017. |
YANG Qian. Comparative study on reduction of phosphorus ore in fixed bed and fluidized bed[D]. Wuhan: Wuhan Institute of Technology, 2017. | |
67 | YANG Xiao, NOHIRA Toshiyuki. A new concept for producing white phosphorus: Electrolysis of dissolved phosphate in molten chloride[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13784-13792. |
68 | ZHONG Yuxiang, YANG Xiao. Dissolution behavior of solid Ca3(PO4)2 in molten CaCl2 [J]. Metallurgical and Materials Transactions B, 2021, 52(5): 3515-3523. |
69 | SEMYKINA A, SHATOKHA V, SEETHAREAMA S, 等. 从炼钢渣中回收铁的新方法[J]. 四川冶金, 2011, 33(3): 47-51. |
SEMYKINA A, SHATOKHA V, SEETHAREAMA S, et al. Innovative approach to recovery of iron from steelmaking slags[J]. Sichuan Metallurgy, 2011, 33(3): 47-51. | |
70 | 陈树辉. 炼钢渣的冶金资源化利用及评价[J]. 区域治理, 2018(15): 285. |
CHEN Shuhui. Utilization and evaluation of metallurgical resources of steelmaking slag[J]. Regional Governance, 2018(15): 285. | |
71 | DU Chuanming, GAO Xu, UEDA Shigeru, et al. Optimum conditions for phosphorus recovery from steelmaking slag with high P2O5 content by selective leaching[J]. ISIJ International, 2018, 58(5): 860-868. |
72 | DU Chuanming, GAO Xu, UEDA Shigeru, et al. Effect of Fe2+/T. Fe ratio on the dissolution behavior of P from steelmaking slag with high P2O5 content[J]. Journal of Sustainable Metallurgy, 2018, 4(4): 443-454. |
73 | IWAMA Takayuki, DU Chuanming, GAO Xu, et al. Extraction of phosphorus from steelmaking slag by selective leaching using citric acid[J]. ISIJ International, 2018, 58(7): 1351-1360. |
74 | 程晓宇, 庞建明, 李石稳, 等. 硅热法提磷热力学分析与试验[J]. 矿冶工程, 2023, 43(6): 112-115. |
CHENG Xiaoyu, PANG Jianming, LI Shiwen, et al. Thermodynamic analysis and testing of phosphorus extraction by silicothermic process[J]. Mining and Metallurgical Engineering, 2023, 43(6): 112-115. | |
75 | 许洋, 毛炜, 赵静一, 等. 一种利用磷煤加压气化还原磷矿石的联产黄磷和合成气的装置和方法: CN111363591A[P]. 2020-07-03. |
XU Yang, MAO Wei, ZHAO Jingyi, et al. Device and method for co-producing yellow phosphorus and synthesis gas by reducing phosphate ore through pressurized gasification of phosphorus coal: CN111363591A[P]. 2020-07-03. | |
76 | 梅毅, 翟持, 聂云祥, 等. 黄磷与合成气的联合生产系统: CN113336207A[P]. 2021-09-03. |
MEI Yi, ZHAI Chi, NIE Yunxiang, et al. Joint production system of yellow phosphorus and synthesis gas: CN113336207A[P]. 2021-09-03. | |
77 | 梅毅, 翟持, 聂云祥, 等. 黄磷与合成气联产的磷煤气化反应装置: CN113322101A[P]. 2021-08-31. |
MEI Yi, ZHAI Chi, NIE Yunxiang, et al. Phosphorus coal gasification reaction device for co-production of yellow phosphorus and synthesis gas: CN113322101A[P]. 2021-08-31. | |
78 | 梅毅, 夜晨, 翟持, 等. 磷煤气化反应装置和方法、联产黄磷与合成气的系统: CN116656397A[P]. 2023-08-29. |
MEI Yi, YE Chen, ZHAI Chi, et al. Phosphorus coal gasification reaction device and method and system for co-producing yellow phosphorus and synthesis gas: CN116656397A[P]. 2023-08-29. |
[1] | 周铭贤, 叶小舟. 废锂离子电池碳热还原优先提锂工艺优化[J]. 化工进展, 2024, 43(4): 2174-2182. |
[2] | 姚远, 井红权, 尹玉婷, 齐帅亮, 王艳语, 侯翠红. “双碳”背景下热法黄磷生产技术研究现状及建议[J]. 化工进展, 2024, 43(4): 2104-2116. |
[3] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[4] | 田月, 董晓涵, 苏毅. SiO2-CTAB复合材料的制备及其对PNP的吸附性能[J]. 化工进展, 2023, 42(11): 6064-6075. |
[5] | 郑光亚, 曹任飞, 夏举佩, 梅毅, 陈正杰. 不同掺杂剂对磷矿碳热还原反应的影响[J]. 化工进展, 2020, 39(12): 5112-5118. |
[6] | 陈永珍, 黎华玲, 宋文吉, 冯自平. 废旧磷酸铁锂材料碳热还原固相再生方法[J]. 化工进展, 2018, 37(S1): 133-140. |
[7] | 杨志平, 时斌, 李晓恩, 王宁玲. 热负荷分配比例对抽凝-背压供热机组能耗影响[J]. 化工进展, 2018, 37(03): 875-883. |
[8] | 贺来宾, 杨卫胜. 大型甲苯歧化与烷基转移技术的实践与思考[J]. 化工进展, 2018, 37(03): 832-836. |
[9] | 陶桂菊, 何文军, 俞峰萍, 李亚男, 杨为民. 环氧乙烷水合制乙二醇多相催化剂的最新进展[J]. 化工进展, 2017, 36(11): 3927-3939. |
[10] | 武春锦, 吕武华, 梅毅, 俞宝根. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374. |
[11] | 覃扬颂,王重华,黄小凤,马丽萍,蒋 明,周 涛. 熔融态黄磷炉渣的综合利用现状[J]. 化工进展, 2012, 31(10): 2319-2323. |
[12] | 张 沛 存. 丙烯腈装置节能降耗技术[J]. 化工进展, 2011, 30(10): 2317-. |
[13] | 李国涛1,隋 红1,2,王汉明3,崔小逖1,唐忠杰4,李鑫钢1,2. 吸收稳定系统节能流程的开发 [J]. 化工进展, 2010, 29(8): 1423-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |