化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1882-1896.DOI: 10.16085/j.issn.1000-6613.2023-0546
• 材料科学与技术 • 上一篇
杨东晓1(), 熊启钊1, 王毅1, 陈杨1,2(), 李立博1,2, 李晋平1,2
收稿日期:
2023-04-07
修回日期:
2023-06-07
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
陈杨
作者简介:
杨东晓(1999—),女,硕士研究生,研究方向为MOF材料的结构调控与气体吸附。E-mail:yangdongxiaotyut@163.com。
基金资助:
YANG Dongxiao1(), XIONG Qizhao1, WANG Yi1, CHEN Yang1,2(), LI Libo1,2, LI Jinping1,2
Received:
2023-04-07
Revised:
2023-06-07
Online:
2024-04-15
Published:
2024-05-13
Contact:
CHEN Yang
摘要:
金属有机框架材料(MOF)因其具有高比表面积、丰富孔隙率、孔径可调的优点,受诸多学者关注,被认为是用于吸附分离的理想吸附剂。但是在实际应用中,大部分微孔MOF材料在吸附过程中的内在传质速率严重受限,而且构建多级孔的方法一般不具有普遍性。本文介绍了调节剂策略、模板策略、后处理策略等构建多级孔MOF的方法,制备了兼具介孔、大孔的多级孔材料,并结合应用场景评价各方法的优缺点,以获得在相对温和条件下构建孔径可调的多级孔MOF的普适性策略。针对多级孔MOF材料在气体吸附分离领域的应用问题,着重剖析了构建多级孔MOF对CO2气体吸附提升的案例,发现多级孔的构建增加了孔径,提高了MOF的比表面积,提供了额外的孔通道,使气体分子的吸附容量和传质速率得到提升,表明多级孔MOF在气体吸附分离方面有优异的性能。最后讨论了多级孔MOF合成和应用存在的问题,并对多级孔MOF面临的合成过程绿色可重复等挑战进行了展望。
中图分类号:
杨东晓, 熊启钊, 王毅, 陈杨, 李立博, 李晋平. 多级孔MOF的制备及其吸附分离应用研究进展[J]. 化工进展, 2024, 43(4): 1882-1896.
YANG Dongxiao, XIONG Qizhao, WANG Yi, CHEN Yang, LI Libo, LI Jinping. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896.
1 | FARHA Omar K, WILMER Christopher E, ERYAZICI Ibrahim, et al. Designing higher surface area metal-organic frameworks: Are triple bonds better than phenyls?[J]. Journal of the American Chemical Society, 2012, 134(24): 9860-9863. |
2 | LIU Chong, LUO Tianyi, FEURA Evan S, et al. Orthogonal ternary functionalization of a mesoporous metal-organic framework via sequential postsynthetic ligand exchange[J]. Journal of the American Chemical Society, 2015, 137(33): 10508-10511. |
3 | CHEN Yao, Hoang Tran, MA Shengqian. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework[J]. Inorganic Chemistry, 2012, 51(23): 12600-12602. |
4 | SCHAATE Andreas, ROY Pascal, GODT Adelheid, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals[J]. Chemistry, 2011, 17(24): 6643-6651. |
5 | COUDERT François-Xavier, FUCHS Alain H. Computational characterization and prediction of metal-organic framework properties[J]. Coordination Chemistry Reviews, 2016, 307: 211-236. |
6 | 王小青, 常则宇, 李立博, 等. 金属有机骨架材料(MOFs)用于气态轻烃的高效分离研究进展[J]. 化工进展, 2020, 39(6): 2218-2234. |
WANG Xiaoqing, CHANG Zeyu, LI Libo, et al. Progress in metal-organic frameworks for efficient separation of gaseous light hydrocarbon[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2218-2234. | |
7 | LONG Jeffrey R, YAGHI Omar M. The pervasive chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1213-1214. |
8 | Teng BEN, LU Chunjing, PEI Cuiying, et al. Polymer-supported and free-standing metal-organic framework membrane[J]. Chemistry, 2012, 18(33): 10250-10253. |
9 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
10 | LI Kunhao, VALLA Julia, Javier GARCIA-MARTINEZ. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. |
11 | FAKHRAEI GHAZVINI Mohammadreza, VAHEDI Milad, NAJAFI NOBAR Shima, et al. Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104790. |
12 | CIRUJANO Francisco G, MARTIN Nuria, Lik H WEE. Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption[J]. Chemistry of Materials, 2020, 32(24): 10268-10295. |
13 | Arun PAL, CHAND Santanu, Madhab C DAS. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation[J]. Inorganic Chemistry, 2017, 56(22): 13991-13997. |
14 | KABTAMU Daniel Manaye, WU Yinan, LI Fengting. Hierarchically porous metal-organic frameworks: Synthesis strategies, structure(s), and emerging applications in decontamination[J]. Journal of Hazardous Materials, 2020, 397: 122765. |
15 | 张莎, 刘芳, 李竞草, 等. 多级孔MOFs材料的合成及其催化应用研究进展[J]. 现代化工, 2020, 40(11): 39-43. |
ZHANG Sha, LIU Fang, LI Jingcao, et al. Research progress in preparation of hierarchical porous MOFs materials and catalytic applications[J]. Modern Chemical Industry, 2020, 40(11): 39-43. | |
16 | 王晓晨. 多级孔金属有机骨架材料的合成及其在生物医药中的应用研究进展[J]. 化工进展, 2021, 40(1): 346-353. |
WANG Xiaochen. Progress on the synthesis of hierarchical metal organic frameworks and its biomedical application[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 346-353. | |
17 | YANG Jiangfeng, LIU Jiaqi, LIU Puxu, et al. K-chabazite zeolite nanocrystal aggregates for highly efficient methane separation[J]. Angewandte Chemie International Edition, 2022, 61(8): e202116850. |
18 | LAN Tianhao, WANG Qi, LU Chunyu, et al. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy[J]. Particuology, 2023, 74: 9-17. |
19 | YANG Xiaoyu, CHEN Lihua, LI Yu, et al. Hierarchically porous materials: Synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
20 | GUAN Hongyu, LEBLANC Robert J, XIE Shuya, et al. Recent progress in the syntheses of mesoporous metal-organic framework materials[J]. Coordination Chemistry Reviews, 2018, 369: 76-90. |
21 | LIU Dingxin, ZOU Dianting, ZHU Haolin, et al. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications[J]. Small, 2018, 14(37): e1801454. |
22 | DOAN Huan V, AMER HAMZAH Harina, KARIKKETHU PRABHAKARAN Prasanth, et al. Hierarchical metal-organic frameworks with macroporosity: Synthesis, achievements, and challenges[J]. Nano-Micro Letters, 2019, 11(1): 54. |
23 | FENG Liang, WANG Kunyu, DAY Gregory S, et al. The chemistry of multi-component and hierarchical framework compounds[J]. Chemical Society Reviews, 2019, 48(18): 4823-4853. |
24 | FENG Liang, WANG Kunyu, POWELL Joshua, et al. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies[J]. Matter, 2019, 1(4): 801-824. |
25 | LUO Yi, AHMAD Momin, SCHUG Alexander, et al. Rising up: Hierarchical metal-organic frameworks in experiments and simulations[J]. Advanced Materials, 2019, 31(26): e1901744. |
26 | FENG Liang, WANG Kunyu, Xiuliang LYU, et al. Hierarchically porous metal-organic frameworks: Synthetic strategies and applications[J]. National Science Review, 2019, 7(11): 1743-1758. |
27 | HALDAR Ritesh, Christof WÖLL. Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures[J]. Nano Research, 2021, 14(2): 355-368. |
28 | LORIGNON Fabrice, GOSSARD Alban, CARBONI Michaël. Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment[J]. Chemical Engineering Journal, 2020, 393: 124765. |
29 | ZHAO Nian, CAI Kun, HE Hongming. The synthesis of metal-organic frameworks with template strategies[J]. Dalton Transactions, 2020, 49(33): 11467-11479. |
30 | CAI Guorui, YAN Peng, ZHANG Liangliang, et al. Metal-organic framework-based hierarchically porous materials: Synthesis and applications[J]. Chemical Reviews, 2021, 121(20): 12278-12326. |
31 | DUAN Chongxiong, LIANG Kuan, LIN Jiahui, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review[J]. Science China Materials, 2022, 65(2): 298-320. |
32 | LIU Chao, WANG Jing, WAN Jingjing, et al. MOF-on-MOF hybrids: Synthesis and applications[J]. Coordination Chemistry Reviews, 2021, 432: 213743. |
33 | SAAD Ali, BISWAS Subharanjan, GKANIATSOU Effrosyni, et al. Metal-organic framework based 1D nanostructures and their superstructures: Synthesis, microstructure, and properties[J]. Chemistry of Materials, 2021, 33(15): 5825-5849. |
34 | ZHANG Xueli, TU Rongxiu, LU Zan, et al. Hierarchical mesoporous metal-organic frameworks encapsulated enzymes: Progress and perspective[J]. Coordination Chemistry Reviews, 2021, 443: 214032. |
35 | YIN Xinyang, ALSUWAIDI Ahmad, ZHANG Xueyi. Hierarchical metal-organic framework (MOF) pore engineering[J]. Microporous and Mesoporous Materials, 2022, 330: 111633. |
36 | BRADSHAW Darren, Samir EL-HANKARI, Lucia LUPICA-SPAGNOLO. Supramolecular templating of hierarchically porous metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5431-5443. |
37 | JIN Jie, LI Ping, CHUN Hyung DO, et al. Defect dominated hierarchical Ti-metal-organic frameworks via a linker competitive coordination strategy for toluene removal[J]. Advanced Functional Materials, 2021, 31(32): 2102511. |
38 | WANG Kunyu, FENG Liang, YAN Tianhao, et al. Morphology transcription in hierarchical MOF-on-MOF architectures[J]. ACS Materials Letters, 2021, 3(6): 738-743. |
39 | KIM Seo-Yul, KIM Ah-Reum, YOON Jung Woon, et al. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake[J]. Chemical Engineering Journal, 2018, 335: 94-100. |
40 | MA Xing, WANG Li, ZHANG Qun, et al. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects[J]. Angewandte Chemie International Edition, 2019, 58(35): 12175-12179. |
41 | KIRCHON Angelo, LI Jialuo, XIA Fangqing, et al. Modulation versus templating: Fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption[J]. Angewandte Chemie International Edition, 2019, 58(36): 12425-12430. |
42 | CAI Guorui, JIANG Hailong. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability[J]. Angewandte Chemie International Edition, 2017, 56(2): 563-567. |
43 | LIU Lingmei, CHEN Zhijie, WANG Jianjian, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution[J]. Nature Chemistry, 2019, 11(7): 622-628. |
44 | LIU Baoyu, LI Yanyan, Su Cheun OH, et al. Fabrication of a hierarchically structured HKUST-1 by a mixed-ligand approach[J]. RSC Advances, 2016, 6(66): 61006-61012. |
45 | WANG Jianjian, LIU Lingmei, CHEN Cailing, et al. Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances[J]. Journal of Materials Chemistry A, 2020, 8(8): 4464-4472. |
46 | KOZACHUK Olesia, Ignacio LUZ, LLABRÉS I XAMENA Francesc X, et al. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: Sorption and catalytic properties[J]. Angewandte Chemie International Edition, 2014, 53(27): 7058-7062. |
47 | QIU Lingguang, XU Tao, LI Zongqun, et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie International Edition, 2008, 47(49): 9487-9491. |
48 | SEOANE B, DIKHTIARENKO A, MAYORAL A, et al. Metal organic framework synthesis in the presence of surfactants: Towards hierarchical MOFs?[J]. CrystEngComm, 2015, 17(7): 1693-1700. |
49 | SUN Linbing, LI Jianrong, PARK Jinhee, et al. Cooperative template-directed assembly of mesoporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2012, 134(1): 126-129. |
50 | LI Ke, YANG Jian, HUANG Rong, et al. Ordered large-pore MesoMOFs based on synergistic effects of TriBlock polymer and hofmeister ion[J]. Angewandte Chemie International Edition, 2020, 59(33): 14124-14128. |
51 | RANI Poonam, SRIVASTAVA Rajendra. Exploring the dicationic gemini surfactant for the generation of mesopores: A step towards the construction of a hierarchical metal-organic framework[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2856-2867. |
52 | YANG Jian, LI Ke, GU Jinlou. Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA[J]. ACS Materials Letters, 2022, 4(2): 385-391. |
53 | HUANG Hongliang, LI Jianrong, WANG Keke, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks[J]. Nature Communications, 2015, 6: 8847. |
54 | SHEN Kui, ZHANG Lei, CHEN Xiaodong, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
55 | ZHANG Xiahui, CHONG Yang Chuah, DONG Panpan, et al. Hierarchically porous Co-MOF-74 hollow nanorods for enhanced dynamic CO2 separation[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43316-43322. |
56 | YUAN Shuai, ZOU Lanfang, QIN Junsheng, et al. Construction of hierarchically porous metal-organic frameworks through linker labilization[J]. Nature Communications, 2017, 8: 15356. |
57 | FENG Liang, YUAN Shuai, ZHANG Liangliang, et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(6): 2363-2372. |
58 | QI Shichao, QIAN Xinyu, HE Qiuxia, et al. Generation of hierarchical porosity in metal-organic frameworks by the modulation of cation valence[J]. Angewandte Chemie, 2019, 131(30): 10210-10215. |
59 | SONG Na, GAGLIARDI Christopher J, BINSTEAD Robert A, et al. Role of proton-coupled electron transfer in the redox interconversion between benzoquinone and hydroquinone[J]. Journal of the American Chemical Society, 2012, 134(45): 18538-18541. |
60 | SONG Dahae, Jinhee BAE, JI Hoon, et al. Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework[J]. Journal of the American Chemical Society, 2019, 141(19): 7853-7864. |
61 | KIM Min, CAHILL John F, FEI Honghan, et al. Postsynthetic ligand and cation exchange in robust metal-organic frameworks[J]. Journal of the American Chemical Society, 2012, 134(43): 18082-18088. |
62 | SHEARER Greig C, VITILLO Jenny G, BORDIGA Silvia, et al. Functionalizing the defects: Postsynthetic ligand exchange in the metal organic framework UiO-66[J]. Chemistry of Materials, 2016, 28(20): 7190-7193. |
63 | TADDEI Marco, WAKEHAM Russell J, KOUTSIANOS Athanasios, et al. Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: Beware of the defects![J]. Angewandte Chemie International Edition, 2018, 57(36): 11706-11710. |
64 | BOISSONNAULT Jake A, WONG-FOY Antek G, MATZGER Adam J. Core-shell structures arise naturally during ligand exchange in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(42): 14841-14844. |
65 | CAI Guorui, MA Xing, KASSYMOVA Meruyert, et al. Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy[J]. ACS Central Science, 2021, 7(8): 1434-1440. |
66 | YANG Pengfei, MAO Fangxin, LI Yongsheng, et al. Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy[J]. Chemistry, 2018, 24(12): 2962-2970. |
67 | KIM Yonghwi, YANG Tao, YUN Gyeongwon, et al. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs[J]. Angewandte Chemie, 2015, 127(45): 13471-13476. |
68 | ALBOLKANY Mohamed K, LIU Congyan, WANG Yang, et al. Molecular surgery at microporous MOF for mesopore generation and renovation[J]. Angewandte Chemie International Edition, 2021, 60(26): 14601-14608. |
69 | ZHAI Xu, FU Yu. Preparation of hierarchically porous metal-organic frameworks via slow chemical vapor etching for CO2 cycloaddition[J]. Inorganic Chemistry, 2022, 61(18): 6881-6887. |
70 | CHANG Fei, ZHOU Jun, CHEN Pu, et al. Microporous and mesoporous materials for gas storage and separation: A review[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(4): 618-626. |
71 | LI Hao, WANG Kecheng, SUN Yujia, et al. Recent advances in gas storage and separation using metal-organic frameworks[J]. Materials Today, 2018, 21(2): 108-121. |
72 | WISSER Dorothea, WISSER Florian M, RASCHKE Silvia, et al. Biological chitin-MOF composites with hierarchical pore systems for air-filtration applications[J]. Angewandte Chemie International Edition, 2015, 54(43): 12588-12591. |
73 | ZHANG Yuanyuan, YUAN Shuai, FENG Xiao, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. |
74 | LIANG Congcong, SHI Zhaolin, HE Chunting, et al. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(38): 13300-13303. |
75 | YIN Xinyang, ZHANG Xueyi. Hierarchical metal-organic frameworks constructed from intergrowth for the adsorption of light hydrocarbons[J]. Materials Chemistry Frontiers, 2020, 4(10): 3057-3062. |
76 | Gwendolyn J H LIM, WU Yue, SHAH Bhuvan B, et al. 3D-printing of pure metal-organic framework monoliths[J]. ACS Materials Letters, 2019, 1(1): 147-153. |
77 | ZHANG Xuesong, ZHENG Suhua, TAO Juan, et al. In situ encapsulation of cellulase in a novel mesoporous metal-organic framework[J]. Catalysis Letters, 2022, 152(3): 699-706. |
78 | BAMBALAZA Sonwabo E, LANGMI Henrietta W, MOKAYA Robert, et al. Co-pelletization of a zirconium-based metal-organic framework (UiO-66) with polymer nanofibers for improved useable capacity in hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8607-8620. |
79 | HUANG Xiaoxian, QIU Lingguang, ZHANG Wang, et al. Hierarchically mesostructured MIL-101 metal-organic frameworks: Supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal[J]. CrystEngComm, 2012, 14(5): 1613-1617. |
80 | DING Meili, FLAIG Robinson W, JIANG Hailong, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
81 | WANG Yong, JIA Xiaoxia, YANG Huajun, et al. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2 [J]. Angewandte Chemie International Edition, 2020, 59(43): 19027-19030. |
82 | GHOSH Sourav, MODAK Arindam, SAMANTA Arnab, et al. Recent progress in materials development for CO2 conversion: Issues and challenges[J]. Materials Advances, 2021, 2(10): 3161-3187. |
83 | GHANBARI Taravat, ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. The Science of the Total Environment, 2020, 707: 135090. |
84 | CHOI Kyung Min, JEON Hyung Joon, KANG Jeung Ku, et al. Heterogeneity within order in crystals of a porous metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(31): 11920-11923. |
85 | ZHANG Hang, DUAN Chongxiong, LI Feier, et al. Green and rapid synthesis of hierarchical porous zeolitic imidazolate frameworks for enhanced CO2 capture[J]. Inorganica Chimica Acta, 2018, 482: 358-363. |
86 | LI Zhenxing, XING Xiaofei, MENG Dong, et al. Hierarchical structure with highly ordered macroporous-mesoporous metal-organic frameworks as dual function for CO2 fixation[J]. iScience, 2019, 15: 514-523. |
87 | CHEN Shoushun, MUKHERJEE Soumya, LUCIER Bryan E G, et al. Cleaving carboxyls: Understanding thermally triggered hierarchical pores in the metal-organic framework MIL-121[J]. Journal of the American Chemical Society, 2019, 141(36): 14257-14271. |
88 | MAO Yiyin, CHEN Danke, HU Pan, et al. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture[J]. Chemistry, 2015, 21(43): 15127-15132. |
89 | WU Wufeng, SU Jingyi, JIA Miaomiao, et al. Vapor-phase linker exchange of metal-organic frameworks[J]. Science Advances, 2020, 6(18): eaax7270. |
90 | PARK Jung Hyo, CHOI Kyung Min, JEON Hyung Joon, et al. In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage[J]. Scientific Reports, 2015, 5: 12045. |
91 | ZHANG Xiaodong, YANG Yang, Xutian LYU, et al. Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework[J]. Journal of Hazardous Materials, 2019, 366: 140-150. |
92 | ZHANG Xiaodong, SHI Xiaoyu, CHEN Jinfeng, et al. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103405. |
93 | ZHANG Zhong, LIU Yiwei, TIAN Hongrui, et al. Hierarchically ordered macro-microporous polyoxometalate-based metal-organic framework single crystals[J]. ACS Nano, 2021, 15(10): 16581-16588. |
94 | JIANG Zefeng, XUE Wenjuan, HUANG Hongliang, et al. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane[J]. Chemical Engineering Journal, 2023, 454: 140093. |
95 | CHEN Chong, LI Bingxue, ZHOU Lijin, et al. Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23060-23071. |
96 | THAKKAR Harshul, EASTMAN Stephen, Qasim AL-NADDAF, et al. 3D-printed metal-organic framework monoliths for gas adsorption processes[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35908-35916. |
97 | AGBAJE Taofeeqah A, SINGH Swati, K Suresh Kumar REDDY, et al. Salt-free synthesis of Cu-BTC metal-organic framework exhibiting mesoporosity and enhanced carbon dioxide adsorption[J]. Microporous and Mesoporous Materials, 2021, 324: 111265. |
[1] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
[2] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[3] | 金彬浩, 朱小倩, 柯天, 张治国, 鲍宗必, 任其龙, 苏宝根, 杨启炜. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881. |
[4] | 赵国珂, 张杨, 刘轶群. 膜法分离一/二价阳离子的研究进展[J]. 化工进展, 2024, 43(3): 1363-1373. |
[5] | 徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386. |
[6] | 钱俊明, 郭猛, 任秀秀, 余亮, 钟璟, 徐荣. 芳烃官能化有机硅膜的制备及丙烯/丙烷分离性能[J]. 化工进展, 2024, 43(3): 1428-1435. |
[7] | 丁红兵, 张盼盼, 陈政奇, 王世伟, 梁真馨, 孙宏军. 超音速旋流分离器湿气出口段液膜测量[J]. 化工进展, 2024, 43(2): 667-679. |
[8] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
[9] | 容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214. |
[10] | 杜翠花, 张茜, 王晓东, 黄伟, 周明. 用于C3H6/N2分离的PDA@PEBA2533膜的制备[J]. 化工进展, 2024, 43(1): 437-446. |
[11] | 汪尚, 姚瑶, 王佳, 董迪迪, 常刚刚. CoZn-MOF衍生多级孔取向碳载CoP及其析氢性能[J]. 化工进展, 2024, 43(1): 447-454. |
[12] | 陈乐, 种海玲, 张致慧, 何明阳, 陈群. CTAB改性Cu-BTC材料的合成及其吸附分离二甲苯异构体的性能[J]. 化工进展, 2024, 43(1): 455-464. |
[13] | 卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528. |
[14] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[15] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |