化工进展 ›› 2024, Vol. 43 ›› Issue (1): 514-528.DOI: 10.16085/j.issn.1000-6613.2023-0265
• 资源与环境化工 • 上一篇
卜祥宁1,2(), 任玺冰2, 童正2, 倪梦茜2, 倪超1,2(), 谢广元1,2
收稿日期:
2023-02-27
修回日期:
2023-09-08
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
倪超
作者简介:
卜祥宁(1990—),男,博士,讲师,硕士生导师,研究方向为微细物料分离过程强化。E-mail:xiangning.bu@foxmail.com。
基金资助:
BU Xiangning1,2(), REN Xibing2, TONG Zheng2, NI Mengqian2, NI Chao1,2(), XIE Guangyuan1,2
Received:
2023-02-27
Revised:
2023-09-08
Online:
2024-01-20
Published:
2024-02-05
Contact:
NI Chao
摘要:
近些年,随着电动汽车行业的快速发展,电动汽车动力电池常用的锂离子电池废弃物保有量也随之激增。废旧锂离子电池的资源化回收利用不仅可以避免固废堆放导致的环境问题,还可以为新电池的制造提供原材料。功率超声被证明是强化废旧锂离子电池资源化回收利用的一种有效手段,独特的物理和化学效应是产生强化效果的主要机制。本文在介绍超声空化理论的基础上论述了超声波强化废旧锂离子电池资源化回收利用的路径,并综述了超声波辅助技术在废旧锂离子电池金属集流体表面电极材料剥离过程、电极材料资源化回收过程、电极材料修复过程中的应用与研究进展。最后,论述了超声波辅助技术在工业化应用中存在的不足,展望了超声波在废旧锂离子电池资源化回收利用中工业化应用的前景。
中图分类号:
卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528.
BU Xiangning, REN Xibing, TONG Zheng, NI Mengqian, NI Chao, XIE Guangyuan. Effect of power ultrasound on resource recycling and utilization of spent lithium-ion batteries: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 514-528.
1 | MAKUZA Brian, TIAN Qinghua, GUO Xueyi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
2 | 朱学帅, 郝廷秀, 黄雪, 等. 退役动力锂离子电池循环回收技术研究进展[J]. 矿业科学学报, 2022, 7(5): 585-594. |
ZHU Xueshuai, HAO Tingxiu, HUANG Xue, et al. Research progress on recycling technologies of lithium-ion batteries from electric vehicles[J]. Journal of Mining Science and Technology, 2022, 7(5): 585-594. | |
3 | FAN Min, CHANG Xin, MENG Qinghai, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. |
4 | RUI Xue, GENG Yong, SUN Xin, et al. Dynamic material flow analysis of natural graphite in China for 2001—2018[J]. Resources, Conservation and Recycling, 2021, 173: 105732. |
5 | 李佳竺. 废旧动力锂电池中集流体原位剥离及不同金属闭环回收研究[D]. 西安: 陕西科技大学, 2020. |
LI Jiazhu. Study on in-situ stripping of current collector and closed-loop recovery of different metals in waste lithium battery[D]. Xi'an: Shaanxi University of Science & Technology, 2020. | |
6 | 韦雅庆, 李会巧, 翟天佑, 等. 一种锂离子电池用GeP纳米片负极及其超声波辅助快速剥离制备方法: CN113753870B[P]. 2023-05-26. |
WEI Yaqing, LI Huiqiao, ZHAI Tianyou, et al. GeP nanosheet negative electrode for lithium ion battery and ultrasonic-assisted rapid stripping preparation method thereof: CN113753870B[P]. 2023-05-26. | |
7 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG Jian, QIN Jitao, LI Fangcheng, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
8 | 张英杰, 许斌, 梁风, 等. 废旧磷酸铁锂电池正极材料的回收研究现状[J]. 人工晶体学报, 2019, 48(5): 800-808. |
ZHANG Yingjie, XU Bin, LIANG Feng, et al. Review on recycling cathode materials of spent lithium iron phosphate batteries[J]. Journal of Synthetic Crystals, 2019, 48(5): 800-808. | |
9 | 许立. 废弃锂离子电池正负极混合材料分离工艺研究[D]. 兰州: 兰州理工大学, 2020. |
XU Li. Study on separation process of anode and cathode mixed materials of waste lithium ion batteries[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
10 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
11 | 黄海港, 何利华. 退役锂电池回收知识图谱分析[J]. 中国有色金属学报, 2021, 31(7): 1965-1978. |
HUANG Haigang, HE Lihua. Knowledge map analysis of recycling of waste lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1965-1978. | |
12 | 陈永珍, 黎华玲, 宋文吉, 等. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
CHEN Yongzhen, LI Hualing, SONG Wenji, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247. | |
13 | 刘东旭, 蔡牧涯, 陈翔, 等. 废旧锂离子电池负极材料再生和利用进展[J]. 化学工业与工程, 2021, 38(6): 2-12. |
LIU Dongxu, CAI Muya, CHEN Xiang, et al. Progress on regeneration and reutilization of anode materials from spent lithium-ion batteries[J]. Chemical Industry and Engineering, 2021, 38(6): 2-12. | |
14 | HUANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
15 | 王皓逸, 邹昱凌, 孟奇, 等. 退役三元锂离子电池正极材料高效清洁回收技术研究进展[J]. 人工晶体学报, 2021, 50(6): 1158-1169. |
WANG Haoyi, ZOU Yuling, MENG Qi, et al. Research progress on efficient and clean recycling technology of spent ternary lithium battery cathode materials[J]. Journal of Synthetic Crystals, 2021, 50(6): 1158-1169. | |
16 | Weiguang LYU, WANG Zhonghang, CAO Hongbin, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
17 | XU Jinqiu, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. |
18 | PINEGAR H, SMITH Y R. Recycling of end-of-life lithium ion batteries, part Ⅰ: Commercial processes[J]. Journal of Sustainable Metallurgy, 2019, 5(3): 402-416. |
19 | PINEGAR H, SMITH Y R. Recycling of end-of-life lithium-ion batteries, part Ⅱ: Laboratory-scale research developments in mechanical, thermal, and leaching treatments[J]. Journal of Sustainable Metallurgy, 2020, 6(1): 142-160. |
20 | HE Yaqun, YUAN Xue, ZHANG Guangwen, et al. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries[J]. Science of the Total Environment, 2021, 766: 142382. |
21 | KIM Seoa, BANG Jaeyeon, YOO Junsang, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. |
22 | LI Li, ZHANG Xiaoxiao, LI M, et al. The recycling of spent lithium-ion batteries: A review of current processes and technologies[J]. Electrochemical Energy Reviews, 2018, 1(4): 461-482. |
23 | 陈钰, 刘冲, 邱于荟, 等. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
CHEN Yu, LIU Chong, QIU Yuhui, et al. Research progress of ionic liquids and green recycling of waste lithium-ion batteries in deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. | |
24 | 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293-3305. |
CHENG Mingqiang, RU Juanjian, HUA Yixin, et al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293-3305. | |
25 | 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3): 454-465. |
XU Zhenghe, LIU Zhenda, WANG Shubin, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. | |
26 | 孙静, 江镇宇, 于冠群, 等. 微波技术在锂离子电池正极材料高效回收再利用中的研究进展[J]. 环境工程学报, 2021, 15(7): 2191-2217. |
SUN Jing, JIANG Zhenyu, YU Guanqun, et al. Microwave-assisted recycling perspectives on valuable cathode active materials for lithium ion batteries: An overview[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2191-2217. | |
27 | ZHANG Guangwen, HE Yaqun, FENG Yi, et al. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10896-10904. |
28 | ZHANG Guangwen, YUAN Xue, HE Yaqun, et al. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021, 406: 124332. |
29 | YAO Ye, PAN Yue, LIU Shiqing. Power ultrasound and its applications: A state-of-the-art review[J]. Ultrasonics Sonochemistry, 2020, 62: 104722. |
30 | 韩格, 孔保华. 功率超声对肌原纤维蛋白功能特性及肉品品质的影响研究进展[J]. 食品科学, 2022, 43(13): 361-369. |
HAN Ge, KONG Baohua. Research progress on the effect of power ultrasound on the functional characteristics of myofibrillar protein and meat quality[J]. Food Science, 2022, 43(13): 361-369. | |
31 | BU X N, DANSTAN J K, HASSANZADEH A, et al. Metal extraction from ores and waste materials by ultrasound-assisted leaching — An overview[J]. Mineral Processing and Extractive Metallurgy Review, 2022: 1-18. |
32 | CHEN Y R, TRUONG V N T, BU X N, et al. A review of effects and applications of ultrasound in mineral flotation[J]. Ultrasonics Sonochemistry, 2020, 60: 104739. |
33 | 卜祥宁, 陈昱冉, 倪超, 等. 超声波强化低阶煤浮选研究现状及展望[J]. 矿产保护与利用, 2022, 42(1): 97-105. |
BU Xiangning, CHEN Yuran, NI Chao, et al. Ultrasound-assisted flotation of low-rank coal: A review of the current status[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 97-105. | |
34 | YASUI K. Acoustic cavitation and bubble dynamics[M]. Cham: Springer International Publishing, 2018. |
35 | OZONEK J. Application of hydrodynamic cavitation in environmental engineering[M]. Leiden: CRC Press/ Balkema, 2012. |
36 | YASUI K. Unsolved problems in acoustic cavitation[M]// ASHOKKUMAR M, CAVALIERI F, CHEMAT F, et al. Handbook of Ultrasonics and Sonochemistry. Singapore: Springer, 2016: 259-292. |
37 | HAYNES W M. CRC Handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2014. |
38 | YASUI K, TUZIUTI T, SIVAKUMAR M, et al. Theoretical study of single-bubble sonochemistry[J]. The Journal of Chemical Physics, 2005, 122(22): 224706. |
39 | ZHANG Liqiang, ZHU Chenxi, YU Sicheng, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294. |
40 | 刘江山. 废旧锂离子电池电极材料低温破碎、研磨及浮选分离研究[D]. 徐州: 中国矿业大学, 2020. |
LIU Jiangshan. Study on low temperature crushing, grinding and flotation separation of waste lithium ion battery electrode materials[D]. Xuzhou: China University of Mining and Technology, 2020. | |
41 | 焦奇方, 邓昌源, 欧家志, 等. 一种废旧锂离子电池回收方法: CN105870529A[P]. 2016-08-17. |
JIAO Jifang, DENG Changyuan, Jiazhi OU, et al. Recovery method for waste lithium ion batteries: CN105870529A[P]. 2016-08-17. . | |
42 | NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465. |
43 | 何本科. 一种石墨负极的回收再生方法: CN107959077A[P]. 2018-04-24. |
HE Benke. Method for recycling graphite negative electrodes: CN107959077A[P]. 2018-04-24. . | |
44 | DIVYA M L, NATARAJAN S, LEE Yun-Sung, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
45 | 谢英豪, 余海军, 欧彦楠, 等. 从废旧动力电池中回收制备磷酸铁锂[J]. 电源技术, 2014, 38(12): 2239-2241, 2257. |
XIE Yinghao, YU Haijun, Yannan OU, et al. Recovery and preparation of LiFePO4 from used traction battery[J]. Chinese Journal of Power Sources, 2014, 38(12): 2239-2241, 2257. | |
46 | ZHANG Tao, HE Yaqun, GE Linhan, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. |
47 | ZHU Shuguang, HE Wenzhi. Removal of organic impurities in lithium cobalt oxide from spent lithium ion batteries by ultrasonic irradiation[J]. Advanced Materials Research, 2013, 864/865/866/867: 1937-1940. |
48 | 徐成建. 超声空化作用的废锂电池正极材料分离及电解液处理研究[D]. 上海: 同济大学, 2018. |
XU Chengjian. Study on separation of cathode materials and electrolyte treatment of waste lithium batteries by ultrasonic cavitation[D]. Shanghai: Tongji University, 2018. | |
49 | 卢毅屏, 夏自发, 冯其明, 等. 废锂离子电池中集流体与活性物质的分离[J]. 中国有色金属学报, 2007, 17(6): 997-1001. |
LU Yiping, XIA Zifa, FENG Qiming, et al. Separation of current collectors and active materials from spent lithium-ion secondary batteries[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(6): 997-1001. | |
50 | 阎杰, 叶茂, 魏进平, 等. 锂离子二次电池正极边角料及残片回收方法: CN1453897A[P]. 2003-11-05. |
YAN Jie, YE Mao, WEI Jinping, et al. Recovery method for leftover and residue of positive electrode of lithium ion battery: CN1453897A[P]. 2003-11-05. | |
51 | 李金惠, 王泽峰, 陈瑶. 从废旧锂离子电池中回收钴的方法: CN101318712A[P]. 2011-07-27. |
LI Jinhui, WANG Zefeng, CHEN Yao. Method for recycling cobalt from waste and old lithium ion battery: CN101318712A[P]. 2011-07-27. | |
52 | YANG Yongxia, ZHENG Xiaohong, CAO Hongbin, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9972-9980. |
53 | LI Jinhui, SHI Pixing, WANG Zefeng, et al. A combined recovery process of metals in spent lithium-ion batteries[J]. Chemosphere, 2009, 77(8): 1132-1136. |
54 | 翁夏翔, 翁希明, 刘睿麒. 一种从废旧锂离子电池中回收钴的方法: CN111809053A[P]. 2020-10-23. |
WENG Xiaxiang, WENG Ximing, LIU Ruiqi. Method for recovering cobalt from waste lithium ion batteries: CN111809053A[P]. 2020-10-23. | |
55 | ZHOU Ming, LIU Kanglin, WEI Mingdeng, et al. Recovery of lithium iron phosphate by specific ultrasonic cavitation parameters[J]. Sustainability, 2022, 14(6): 3390. |
56 | CHEN Xiangping, LI Shuzhen, WU Xin, et al. In-situ recycling of coating materials and Al foils from spent lithium ion batteries by ultrasonic-assisted acid scrubbing[J]. Journal of Cleaner Production, 2020, 258: 120943. |
57 | TOMA C M, GHICA G V, BUZATU M, et al. A recovery process of active cathode paste from spent Li-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2017, 209: 012034. |
58 | BIAN Doucheng, SUN Yonghui, LI Sheng, et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers[J]. Electrochimica Acta, 2016, 190: 134-140. |
59 | 陈召勇, 朱华丽. 一种废弃三元锂离子动力电池的综合回收方法: CN108232351A[P]. 2020-06-09. |
CHEN Zhaoyong, ZHU Huali. Comprehensive recovery method for abandoned ternary lithium ion power battery: CN108232351A[P]. 2020-06-09. | |
60 | ZHAO Siqi, ZHANG Wenxuan, LI Guangming, et al. Ultrasonic renovating and coating modifying spent lithium cobalt oxide from the cathode for the recovery and sustainable utilization of lithium-ion battery[J]. Journal of Cleaner Production, 2020, 257: 120510. |
61 | CHEN Xiangping, LI Shuzhen, WANG Yi, et al. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation[J]. Waste Management, 2021, 136: 67-75. |
62 | HUANG Tao, ZHANG Shuwen, ZHOU Lulu, et al. Synergistic effect of ultrasonication and sulfate radical on recovering cobalt and lithium from the spent lithium-ion battery[J]. Journal of Environmental Management, 2022, 305: 114395. |
63 | YAN Shuxuan, JIANG Youzhou, CHEN Xiangping, et al. Improved advanced oxidation process for in situ recycling of Al foils and cathode materials from spent lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12728-12738. |
64 | 赵光金, 何睦, 唐国鹏, 等. 废旧磷酸铁锂电池正极材料浸取及回收研究[J]. 电源技术, 2019, 43(3): 442-444. |
ZHAO Guangjin, HE Mu, TANG Guopeng, et al. Study on leaching and recovery of cathode material for spent lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2019, 43(3): 442-444. | |
65 | LI Li, LU Jun, REN Yang, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. |
66 | YANG Li, XI Guoxi, XI Yuebin. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNi x Co y Mn z O2 cathode materials[J]. Ceramics International, 2015, 41(9): 11498-11503. |
67 | NAYAKA G P, ZHANG Yingjie, DONG Peng, et al. Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids[J]. Waste Management, 2018, 78: 51-57. |
68 | HE Lipo, SUN Shuying, SONG Xingfu, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. |
69 | 郭雅峰, 夏志东, 毛倩瑾, 等. 超声辅助处理回收锂离子电池正极材料[J]. 电子元件与材料, 2007, 26(5): 36-38. |
GUO Yafeng, XIA Zhidong, MAO Qianjin, et al. Recovery of cathode materials from lithium-ion batteries with auxiliary ultrasonic method[J]. Electronic Components and Materials, 2007, 26(5): 36-38. | |
70 | 李建刚, 赵如松, 刘华臣. 废旧锂离子电池中有价金属的回收[J]. 中山大学学报(自然科学版), 2007, 46(B06): 256-257. |
LI Jiangang, ZHAO Rusong, LIU Huachen. Recovery of metal values from spent lithium-ion batteries[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(B06): 256-257. | |
71 | LI Jiangang, ZHANG Qian, HE Xiangming. Preparation of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent Li-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(S1): 897-901. |
72 | LI Jiangang, ZHAO Rusong, HE Xiangming, et al. Preparation of LiCoO2 cathode materials from spent lithium-ion batteries[J]. Ionics, 2009, 15(1): 111-113. |
73 | 熊兴泉, 韩骞, 石霖, 等. 低共熔溶剂在绿色有机合成中的应用[J]. 有机化学, 2016, 36(3): 480-489. |
XIONG Xingquan HAN Qian, SHI Lin, et al. Application of deep-eutectic solvents in green organic synthesis[J]. Chinese Journal of Organic Chemistry, 2016, 36(3): 480-489. | |
74 | 陈继, 邓岳锋, 李海连, 杨茂华. 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法: CN109536713A[P]. 2020-03-13. |
CHEN Ji, DENG Yuefeng, LI Hailian, et al. Method for separating waste lithium ion battery positive electrode active substance from aluminum foil through ionic liquid: CN109536713A[P]. 2020-03-13. | |
75 | JAFARI M, TORABIAN M M, BAZARGAN A. A facile chemical-free cathode powder separation method for lithium ion battery resource recovery[J]. Journal of Energy Storage, 2020, 31: 101564. |
76 | 郑元昊, 王曦. 废旧锂离子电池材料的回收与应用[J]. 造纸装备及材料, 2022, 51(1): 169-171. |
ZHENG Yuanhao, WANG Xi. Recovery and application of waste lithium ion battery materials[J]. Papermaking Equipment & Materials, 2022, 51(1): 169-171. | |
77 | 杨越, 易晨星, 伍喜庆, 等. 一种锂离子电池负极材料回收利用方法: CN110690519B[P]. 2023-03-14. |
YANG Yue, YI Chenxing, WU Xiqing, et al. Lithium ion battery negative electrode material recycling method: CN110690519B[P]. 2023-03-14. . | |
78 | 王泽峰. 废锂电池中钴的回收技术研究[D]. 北京: 清华大学, 2008. |
WANG Zefeng. Study on recovery technology of cobalt from waste lithium batteries[D]. Beijing: Tsinghua University, 2008. | |
79 | 李建波, 徐政, 纪仲光, 等. 基于规则破碎的废旧锂离子动力电池分选回收工艺研究[J]. 稀有金属, 2019, 43(7): 746-753. |
LI Jianbo, XU Zheng, JI Zhongguang, et al. Separation and recovery of spent lithium ion power batteries based on regular crushing[J]. Chinese Journal of Rare Metals, 2019, 43(7): 746-753. | |
80 | 艾戊云. 一种锂电池负极材料回收利用方法: CN108110364A[P]. 2018-06-01. |
AI Wuyun. Recycling method of negative electrode material of lithium battery: CN108110364A[P]. 2018-06-01. | |
81 | 徐越, 刘科, 孙云龙. 一种废旧锂离子电池集流体回收方法: CN108336440A[P]. 2020-04-07. |
XU Yue, LIU Ke, SUN Yunlong. Waste lithium-ion battery current collector recovery method: CN108336440A[P]. 2020-04-07. . | |
82 | 陈成. 影响钼粉筛分效率因素的分析[J]. 中国钼业, 2011, 35(3): 48-51. |
CHEN Cheng. The factors analysis of affect the efficiency for screening molybdenum powder[J]. China Molybdenum Industry, 2011, 35(3): 48-51. | |
83 | 曾伟山. 超声波振动筛在三氯蔗糖生产中的应用[J]. 广东化工, 2014, 41(14): 113-114. |
ZENG Weishan. Application in the production of sucralose in ultrasonic vibration sieve[J]. Guangdong Chemical Industry, 2014, 41(14): 113-114. | |
84 | 赵鹏飞, 尹晓莹, 满瑞林, 等. 废旧锂离子电池回收工艺研究进展[J]. 电池工业, 2011, 16(6): 367-371. |
ZHAO Pengfei, YIN Xiaoying, MAN Ruilin, et al. Research of spent Li-ion battery recycling process[J]. Chinese Battery Industry, 2011, 16(6): 367-371. | |
85 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
86 | 邹超, 潘君丽, 刘维桥, 等. 湿法回收锂离子电池三元正极材料的进展[J]. 电池, 2018, 48(2): 130-134. |
ZOU Chao, PAN Junli, LIU Weiqiao, et al. Progress in hydrometallurgical process for recycling ternary cathode material of Li-ion battery[J]. Battery Bimonthly, 2018, 48(2): 130-134. | |
87 | LI Li, QU Wenjie, LIU Fang, et al. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries[J]. Applied Surface Science, 2014, 315: 59-65. |
88 | JIANG Feng, CHEN Yuqian, JU Shaohua, et al. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries[J]. Ultrasonics Sonochemistry, 2018, 48: 88-95. |
89 | 孙晓飞, 赵鋆泽, 周云. 一种分离并回收锂离子电池焙烧产物中有价金属的方法: CN111945006A[P]. 2020-11-17. |
SUN Xiaofei, ZHAO Yunze, ZHOU Yun. Method for separating and recovering valuable metals in roasted product of lithium ion battery: CN111945006A[P]. 2020-11-17. | |
90 | 赵锟, 林永, 王曼丽, 等. 超声波辅助酸浸法回收废旧锂离子电池中的钴[J]. 广州化工, 2013, 41(11): 90-91. |
ZHAO Kun, LIN Yong, WANG Manli, et al. Recycling cobalt from lithium-ion spent batteries by ultrasonic-assisted acid leaching technology[J]. Guangzhou Chemical Industry, 2013, 41(11): 90-91. | |
91 | 金玉健. 从废弃锂离子电池中回收钴的研究[D]. 武汉: 武汉理工大学, 2006. |
JIN Yujian. Study on recovering cobalt from waste lithium ion batteries[D]. Wuhan: Wuhan University of Technology, 2006. | |
92 | 朱华丽, 陈召勇. 一种从废锂离子电池材料中回收钴和锂的方法: CN105907989A[P]. 2017-11-10. |
ZHU Huali, CHEN Zhaoyong. Method for recycling cobalt and lithium from waste lithium ion battery material: CN105907989A[P]. 2017-11-10. | |
93 | 张永禄, 王成彦, 杨卜, 等. 废旧锂离子电池LiCoO2电极中钴的浸出动力学[J]. 有色金属(冶炼部分), 2012(8): 4-6. |
ZHANG Yonglu, WANG Chengyan, YANG Bo, et al. Leaching kinetics of cobalt from LiCoO2 cathode in spent lithium-ion batteries[J]. Nonferrous Metals (Extractive Metallurgy), 2012(8): 4-6. | |
94 | 李林林, 曹林娟, 麦永雄, 等. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. |
LI Linlin, CAO Linjuan, Yongxiong MAI, et al. Research progress of the organic acid of the hydrometallurgical recovery technology in spent Li ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1641-1650. | |
95 | HE Hongping, FENG Junli, GAO Xiaofeng, et al. Selective separation and recovery of lithium, nickel, MnO2, and Co2O3 from LiNi0.5Mn0.3Co0.2O2 in spent battery[J]. Chemosphere, 2022, 286: 131897. |
96 | GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. |
97 | LI Li, ZHAI Longyu, ZHANG Xiaoxiao, et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process[J]. Journal of Power Sources, 2014, 262: 380-385. |
98 | 钱王, 张婉玉, 董慧娴, 等. 超声波强化有机酸浸出废旧锂离子电池中钴的实验研究[J]. 广东化工, 2021, 48(9): 48-49. |
QIAN Wang, ZHANG Wanyu, DONG Huixian, et al. Experimental study on leaching cobalt from waste lithium-ion batteries with organic acids enhanced by ultrasonic wave[J]. Guangdong Chemical Industry, 2021, 48(9): 48-49. | |
99 | ESMAEILI M, RASTEGAR S O, BEIGZADEH R, et al. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2 [J]. Chemosphere, 2020, 254: 126670. |
100 | ZHOU Siyuan, ZHANG Yingjie, MENG Qi, et al. Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration[J]. Journal of Environmental Management, 2021, 277: 111426. |
101 | NING Peichao, MENG Qi, DONG Peng, et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J]. Waste Management, 2020, 103: 52-60. |
102 | YAN Shuxuan, SUN Conghao, ZHOU Tao, et al. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives[J]. Separation and Purification Technology, 2021, 257: 117930. |
103 | LIN Leqi, LU Zhongming, ZHANG Wen. Recovery of lithium and cobalt from spent Lithium- Ion batteries using organic aqua regia (OAR): Assessment of leaching kinetics and global warming potentials[J]. Resources Conservation and Recycling, 2021, 167: 105416. |
104 | 刘春力, 姚俊霞, 曾桂生, 等. 利用低共熔溶剂浸出废旧锂离子电池中有价金属的方法: CN111690813A[P]. 2020-09-22. |
LIU Chunli, YAO Junxia, ZENG Guisheng, et al. Method for utilizing eutecticevaporate solvent for leaching valuable metal in waste lithium ion batteries: CN111690813A[P]. 2020-09-22. | |
105 | 尹文艳, 魏致慧. 废旧锂离子电池中有价金属回收利用技术研究进展[J]. 金属材料与冶金工程, 2018, 46(2): 56-60. |
YIN Wenyan, WEI Zhihui. Progress of recovery and recycling of valuable metals from spent lithium-ion battery[J]. Metal Materials and Metallurgy Engineering, 2018, 46(2): 56-60. | |
106 | 王光旭, 李佳, 许振明. 废旧锂离子电池中有价金属回收工艺的研究进展[J]. 材料导报, 2015, 29(7): 113-123. |
WANG Guangxu, LI Jia, XU Zhenming. Recycling valuable metals from spent lithium ion batteries[J]. Materials Review, 2015, 29(7): 113-123. | |
107 | VYAS S, TING Yen-Peng. A review of the application of ultrasound in bioleaching and insights from sonication in (bio)chemical processes[J]. Resources, 2017, 7(1): 3. |
108 | BORJA D, NGUYEN K, SILVA R, et al. Experiences and future challenges of bioleaching research in South Korea[J]. Minerals, 2016, 6(4): 128. |
109 | ZHAO Siqi, ZHANG Wenxuan, LI Guangming, et al. Ultrasonic renovation mechanism of spent LCO batteries: A mild condition for cathode materials recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105019. |
110 | 贺文智, 张哲鸣, 夏静, 等. 一种超声场强化失效锂离子电池中钴酸锂材料水热修复的方法: CN103073071A[P]. 2013-05-01. |
HE Wenzhi, ZHANG Zheming, XIA Jing, et al. A method of ultrasonic field strengthening the hydrothermal repair of lithium cobaltate materials in failed lithium-ion batteries: CN103073071A[P]. 2013-05-01. | |
111 | 贺文智, 朱曙光, 李光明, 等. 一种失效锂离子电池的钴酸锂材料超声修复的方法: CN102344172A[P]. 2012-02-08. |
HE Wenzhi, ZHU Shuguang, LI Guangming, et al. Method for ultrasonically repairing lithium cobaltite material of failed lithium ion battery: CN102344172A[P]. 2012-02-08. . | |
112 | 张哲鸣, 吴正斌. 一种锂电池的钴酸锂材料的修复回收方法: CN105428747A[P]. 2016-03-23. |
ZHANG Zheming, WU Zhengbin. Restoration and recycling method of lithium cobaltate materials of lithium batteries: CN105428747A[P]. 2016-03-23. . | |
113 | ZHANG Zheming, HE Wenzhi, LI Guangming, et al. Renovation of LiCoO2 crystal structure from spent lithium ion batteries by ultrasonic hydrothermal reaction[J]. Research on Chemical Intermediates, 2015, 41(6): 3367-3373. |
114 | ZHANG Zheming, HE Wenzhi, LI Guangming, et al. Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries[J]. International Journal of Electrochemical Science, 2014, 9(7): 3691-3700. |
115 | 张哲鸣, 王文伟, 李凤姣. 一种从废旧钴酸锂电池中回收再生正极材料的方法: CN112707447A[P]. 2021-04-27. |
ZHANG Zheming, WANG Wenwei, LI Fengjiao. Method for recycling regenerated positive electrode material from waste lithium cobalt oxide battery: CN112707447A[P]. 2021-04-27. . | |
116 | WU Pengfei, BAI Lixin, LIN Weijun, et al. Mechanism and dynamics of hydrodynamic-acoustic cavitation (HAC)[J]. Ultrasonics Sonochemistry, 2018, 49: 89-96. |
117 | 张光文. 基于热解的废旧锂离子电池电极材料解离与浮选基础研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Guangwen. Basic research on dissociation and flotation of electrode materials for waste lithium ion batteries based on pyrolysis[D]. Xuzhou: China University of Mining and Technology, 2019. | |
118 | SHIH Yu-Jen, CHIEN Shih-Kai, JHANG Syu-Ruei, et al. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 151-159. |
119 | HUANG Zhe, LIN Mi, QIU Ruijun, et al. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and waterflow-magnetic separation[J]. Resources, Conservation and Recycling, 2021, 164: 105172. |
120 | 孙晓飞, 周云. 一种超声波-微波辅助回收锂离子电池的方法: CN111961860A[P]. 2020-11-20. |
SUN Xiaofei, ZHOU Yun. Ultrasonic-microwave assisted lithium ion battery recovery method: CN111961860A[P]. 2020-11-20. | |
121 | WANG Yu, TU Yanan, XU Zhiqiang, et al. A promising method for recovery of graphite and cathode materials from spent lithium-ion batteries[J]. Ionics, 2022, 28(6): 2603-2611. |
122 | ZHANG Lei, WANG Xue, HU Yang, et al. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein[J]. Ultrasonics Sonochemistry, 2021, 80: 105803. |
123 | LUO Xiaoming, CAO Juhang, GONG Haiyang, et al. Phase separation technology based on ultrasonic standing waves: A review[J]. Ultrasonics Sonochemistry, 2018, 48: 287-298. |
124 | XU Baoguo, AZAM S M R, FENG Min, et al. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review[J]. Ultrasonics Sonochemistry, 2021, 81: 105855. |
125 | 陈兰兰, 卢东方, 王毓华, 等. 超声波技术在矿物浮选中的研究、应用现状及发展趋势[J]. 中国有色金属学报, 2021, 31(4): 1042-1056. |
CHEN Lanlan, LU Dongfang, WANG Yuhua, et al. Research and application of ultrasonic technology in mineral flotation and development trend[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1042-1056. | |
126 | RYNDZIONEK R, SIENKIEWICZ Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors[J]. Ultrasonics, 2021, 116: 106471. |
127 | 沈丽媛, 吴宏, 李姜, 等. 聚合物熔体超声辅助加工的研究进展[J]. 高分子材料科学与工程, 2014, 30(2): 205-209. |
SHEN Liyuan, WU Hong, LI Jiang, et al. Progress in ultrasound assisted processing of polymer melt[J]. Polymer Materials Science & Engineering, 2014, 30(2): 205-209. |
[1] | 容凡丁, 丁泽相, 曹义风, 陈俐吭, 杨柳, 申福星, 杨启炜, 鲍宗必. 离子液体强化不饱和键差异化合物分离的研究进展[J]. 化工进展, 2024, 43(1): 198-214. |
[2] | 杜翠花, 张茜, 王晓东, 黄伟, 周明. 用于C3H6/N2分离的PDA@PEBA2533膜的制备[J]. 化工进展, 2024, 43(1): 437-446. |
[3] | 陈乐, 种海玲, 张致慧, 何明阳, 陈群. CTAB改性Cu-BTC材料的合成及其吸附分离二甲苯异构体的性能[J]. 化工进展, 2024, 43(1): 455-464. |
[4] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[5] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[6] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[9] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[10] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[11] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[12] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[13] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[14] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[15] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |