1 |
冯鹏, 李正鸿, 刘鹤欣, 等. 超低排放燃煤电厂中SO3的迁移及脱除特征[J]. 化工进展, 2020, 39(11): 4660-4667.
|
|
FENG Peng, LI Zhenghong, LIU Hexin, et al. Migration and removal characteristics of SO3 in ultra-low emission coalfired power plant[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4660-4667.
|
2 |
曹建宗, 刘琦, 陈文通, 等. 典型湿法脱硫系统存在的问题及人工智能在优化运行中的应用[J]. 化工进展, 2020, 39(S1): 242-249.
|
|
CAO Jianzong, LIU Qi, CHEN Wentong, et al. Problems of typical wet desulfurization system and application of artificial intelligence in optimal operation[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 242-249.
|
3 |
李光英, 赵钦新, 邓世丰,等. 燃煤电站烟羽消除计算方法及实验验证[J]. 动力工程学报, 2022, 42(6):544-551.
|
|
LI Guangying, ZHAO Qinxin, DENG Shifeng, et al. Experimental validation of calculation method on wet flue gas plume elimination of coal-fired units[J]. Journal of Chinese Society of Power Engineering, 2022, 42(6): 544-551.
|
4 |
赵钦新, 苟远波. 凝结换热与冷凝式锅炉原理及应用(待续)[J]. 工业锅炉, 2013(1): 1-12.
|
|
ZHAO Qinxin, GOU Yuanbo. Principle and application of condensing boilers(to be continued)[J]. Industrial Boiler, 2013(1): 1-12.
|
5 |
赵钦新, 苟远波. 凝结换热与冷凝式锅炉原理及应用(续完)[J]. 工业锅炉, 2013(2): 1-7.
|
|
ZHAO Qinxin, GOU Yuanbo. Principle and application of condensing boilers(the end)[J]. Industrial Boiler, 2013(2): 1-7.
|
6 |
HU X, JACOBI A M. The intertube falling film: Part 1—Flow characteristics, mode transitions, and hysteresis[J]. Journal of Heat Transfer, 1996, 118(3): 616-625.
|
7 |
ROQUES J F, DUPONT V, THOME J R. Falling film transitions on plain and enhanced tubes[J]. Journal of Heat Transfer, 2002, 124(3): 491-499.
|
8 |
马志先. 水平管束外膜状凝结换热试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
|
MA Zhixian. Experiment and theory of film condensation heat transfer on horizontal tube bundle[D]. Harbin: Harbin Institute of Technology, 2012.
|
9 |
熊孟清, 林宗虎, 刘咸定. 含空气的蒸汽在水平圆管外表面冷凝换热的实验研究[J]. 发电设备, 1997, 11(2): 33-35.
|
|
XIONG Mengqing, LIN Zonghu, LIU Xianding. An experimental study about the condensation heat transfer of steam with air on the external surface of a horizontal tube[J]. Power Equipment, 1997, 11(2): 33-35.
|
10 |
HUANG J, ZHANG J, WANG L. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Applied Thermal Engineering, 2015, 89: 469-484.
|
11 |
OSAKABE Masahiro, ISHIDA Kazuhiko, YAGI Kiyoyuki, et al. Condensation heat transfer on tubes in actual flue gas[J]. Heat Transfer—Asian Research, 2001, 30(2): 139-151.
|
12 |
WANG Y, ZHAO Q, ZHOU Q, et al. Experimental and numerical studies on actual flue gas condensation heat transfer in a left-right symmetric internally finned tube[J]. International Journal of Heat and Mass Transfer, 2013, 64:10-20.
|
13 |
LEVY E, BILIRGEN H, SAMUELSON C, et al. Separation of water and acid vapors from boiler flue gas in a condensing heat exchanger[C]. Proceedings of the 33rd International Technical Conference on Coal Utilization & Fuel Systems, 2008.
|
14 |
JEONG K, KESSEN M J, BILIRGEN H, et al. Analytical modeling of water condensation in condensing heat exchanger[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2361-2368.
|
15 |
LI H, CHEN Q, ZHANG X, et al. Evaluation of a biomass drying process using waste heat from process industries: A case study[J]. Applied Thermal Engineering, 2012, 3(35): 71-80.
|
16 |
李俊. 含湿气体横掠管束的凝结对流传热实验研究[D]. 南京: 东南大学, 2015.
|
|
LI Jun. Experimental study on condensation-convection heat transfer for wet air flowing over the horizontal tubes[D]. Nanjing: Southeast University, 2015.
|
17 |
谭冰, 蔡杰进, 刘荣, 等. 高压下含不凝性气体的冷凝换热模型研究[J]. 原子能科学技术, 2021, 55(6): 1047-1053.
|
|
TAN Bing, CAI Jiejin, LIU Rong, et al. Research on condensation heat transfer model with non-condensable gas under high pressure[J]. Atomic Energy Science and Technology, 2021, 55(6): 1047-1053.
|
18 |
王丕嶺. 天然气烟气间壁凝结对流换热特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
WANG Piling. Study on condensation-convection heat transfer of flue gas[D]. Harbin: Harbin Institute of Technology, 2016.
|
19 |
娄桂云, 魏敦崧. 天然气燃烧烟气的冷凝传热特性[J]. 煤气与热力, 2005, 25(1): 6-10, 14.
|
|
LOU Guiyun, WEI Dunsong. Condensation heat transfer characteristic of flue gas during natural gas combustion[J]. Gas & Heat, 2005, 25(1): 6-10, 14.
|
20 |
庄正宁, 唐桂华, 朱长新. 不凝气体存在时水平管束冷凝换热特性的试验研究[J]. 西安交通大学学报, 2000, 34(7): 35-38.
|
|
ZHUANG Zhengning, TANG Guihua, ZHU Changxin. Condensation heat transfer characteristics of a horizontal tube bundle with non condensable gas[J]. Journal of Xi’an Jiaotong University, 2000, 34(7): 35-38.
|
21 |
陈静妍, 徐荣吉, 吴青平, 等. 基于BP神经网络的不凝性气体对脉动热管传热影响的分析[J]. 化工进展, 2020, 39(7): 2574-2582.
|
|
CHEN Jingyan, XU Rongji, WU Qingping, et al. Heat transfer of non-condensable gas to pulsating heat pipe based on BP neural network model[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2574-2582.
|
22 |
汪琦. 氟塑料热交换器的结构[J]. 化工设备设计, 1994, 31(3): 33-37.
|
|
WANG Qi. Structure of fluorine plastic heat exchanger[J]. Process Equipment & Piping, 1994, 31(3): 33-37.
|
23 |
戴传山, 李彪, 王秋香. 氟塑料换热器研究进展[J]. 化工进展, 2011, 30(S1): 633-636.
|
|
DAI Chuanshan, LI Biao, WANG Qiuxiang. Research progress of fluoroplastic heat exchanger[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 633-636.
|
24 |
李剑锋, 涂淑平, 孙文哲. 氟塑料换热器的研究及应用进展[J]. 应用化工, 2019, 48(3): 685-687, 693.
|
|
LI Jianfeng, TU Shuping, SUN Wenzhe. Research and application progress of fluoroplastic heat exchanger[J]. Applied Chemical Industry, 2019, 48(3): 685-687, 693.
|
25 |
石仁强, 王舒涛, 杨超, 等. 烟气脱白系统2205双相不锈钢部件腐蚀失效分析[J]. 机械设计, 2020, 37(S2): 86-89.
|
|
SHI Renqiang, WANG Shutao, YANG Chao, et al. Corrosion failure analysis of 2205 duplex stainless steel components in wet plume elimination system[J]. Journal of Machine Design, 2020, 37(S2): 86-89.
|
26 |
孙金栋, 陈欣, 刘立平. 湿烟气冷凝脱硫实验研究[J]. 北方环境, 2004, 29(6): 21-23.
|
|
SUN Jindong, CHEN Xin, LIU Liping. Experimental study on condensation desulfurization of wet flue gas[J]. North Environment, 2004, 29(6): 21-23.
|
27 |
王茜雯, 王磊磊, 吴昊, 等. 脱硫净烟气降温冷凝促进WFGD系统后次生细颗粒物的脱除[J]. 中南大学学报(自然科学版), 2021, 52(1): 303-312.
|
|
WANG Qianwen, WANG Leilei, WU Hao, et al. Promoting the removal of secondary particles emitted from WFGD system by reducing temperature of desulfurized flue gas[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 303-312.
|