化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2306-2314.DOI: 10.16085/j.issn.1000-6613.2022-1383
齐承鲁(), 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌(
)
收稿日期:
2022-07-25
修回日期:
2022-11-20
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
郑斌
作者简介:
齐承鲁(1998—),男,硕士研究生,研究方向为传热传质及余热高效利用。E-mail:moqi725@163.com。
基金资助:
QI Chenglu(), ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin(
)
Received:
2022-07-25
Revised:
2022-11-20
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHENG Bin
摘要:
换热器内设的水平换热管束是影响换热器内固体颗粒流动均匀性的重要因素,基于离散单元法构建了内置横管式固体颗粒换热器的流动计算模型,研究了管束排列方式和水平管间距对换热器内固体颗粒流动的影响。结果表明,颗粒流过错排管束的均匀性优于顺排管束,颗粒层的形变和停留时间波动性均较小,颗粒流动不均匀度为0.00721,比顺排管束的减少了42.3%,错排管束的颗粒停留时间标准偏差为0.029,比顺排管束的减少了39.1%。当颗粒流过错排管束时,随着水平管间距的减小,颗粒层的形变和停留时间波动性均增大,颗粒流动均匀性显著恶化,颗粒流动不均匀度由0.00721增大到0.00996,增大38.1%,颗粒停留时间标准偏差由0.029增大到0.039,增大33.8%,剪切区内颗粒速度差异增大,颗粒平均速度梯度由5.97×10-4s-1增大到7.85×10-4s-1,增大了31.4%。
中图分类号:
齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314.
QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314.
密度/kg∙m-3 | 泊松比 | 剪切模量/Pa | 静摩擦系数 | 滚动摩擦系数 | 恢复系数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
颗粒 | 换热器 | 颗粒 | 换热器 | 颗粒 | 换热器 | 颗粒-颗粒 | 颗粒-换热器 | 颗粒-颗粒 | 颗粒-换热器 | 颗粒-颗粒 | 颗粒-换热器 | |||||
1400 | 7850 | 0.3 | 0.3 | 1×108 | 7×1010 | 0.6 | 0.4 | 0.05 | 0.05 | 0.5 | 0.5 |
表1 参数设置
密度/kg∙m-3 | 泊松比 | 剪切模量/Pa | 静摩擦系数 | 滚动摩擦系数 | 恢复系数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
颗粒 | 换热器 | 颗粒 | 换热器 | 颗粒 | 换热器 | 颗粒-颗粒 | 颗粒-换热器 | 颗粒-颗粒 | 颗粒-换热器 | 颗粒-颗粒 | 颗粒-换热器 | |||||
1400 | 7850 | 0.3 | 0.3 | 1×108 | 7×1010 | 0.6 | 0.4 | 0.05 | 0.05 | 0.5 | 0.5 |
管束排列方式 | 水平管间距 | 上层管束数量 | 下层管束数量 | 换热管直径/mm | 图示 |
---|---|---|---|---|---|
SP1 | 1/3 | 2 | 2 | 60 | ![]() |
CP1 | 1/3 | 2 | 3 | 60 | ![]() |
表2 管束排列方式
管束排列方式 | 水平管间距 | 上层管束数量 | 下层管束数量 | 换热管直径/mm | 图示 |
---|---|---|---|---|---|
SP1 | 1/3 | 2 | 2 | 60 | ![]() |
CP1 | 1/3 | 2 | 3 | 60 | ![]() |
错排管束 | 水平管间距 | 上层管束数量 | 下层管束数量 | 换热管直径/mm | 图示 |
---|---|---|---|---|---|
CP1 | 1/3 | 2 | 3 | 60 | ![]() |
CP2 | 1/4 | 3 | 4 | 60 | ![]() |
CP3 | 1/5 | 4 | 5 | 60 | ![]() |
表3 错排管束
错排管束 | 水平管间距 | 上层管束数量 | 下层管束数量 | 换热管直径/mm | 图示 |
---|---|---|---|---|---|
CP1 | 1/3 | 2 | 3 | 60 | ![]() |
CP2 | 1/4 | 3 | 4 | 60 | ![]() |
CP3 | 1/5 | 4 | 5 | 60 | ![]() |
1 | 中华人民共和国国家统计局, 中国统计年鉴[R]. 北京: 中华人民共和国国家统计局, 2021. |
National Bureau of Statistics of People’s Republic of China. China statistical yearbook[R]. Beijing: National Bureau of Statistics of the People’s Republic of China, 2021. | |
2 | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17): 1856-1857. |
HE Yaling. Research on major common problems of efficient comprehensive utilization of industrial waste heat[J]. Chinese Science Bulletin, 2016, 61(17): 1856-1857. | |
3 | 刘军祥, 于庆波, 谢华清, 等. 冶金渣颗粒余热回收的实验研究[J]. 东北大学学报(自然科学版), 2014, 35(2): 245-248. |
LIU Junxiang, YU Qingbo, XIE Huaqing, et al. Experimental study on waste heat recovery for metallurgical slag particles[J]. Journal of Northeastern University (Natural Science), 2014, 35(2): 245-248. | |
4 | CHENG Zhilong, TAN Zhoutuo, GUO Zhigang, et al. Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials[J]. Applied Thermal Engineering, 2020, 179: 115703. |
5 | GUO Zhigang, TAN Zhoutuo, TIAN Xing, et al. Heat transfer prediction of granular flow in moving bed heat exchanger: Characteristics of heat transfer enhancement and dynamic control[J]. Solar Energy, 2021, 230: 1052-1069. |
6 | GUO Zhigang, YANG Jian, TAN Zhoutuo, et al. Numerical study on gravity-driven granular flow around tube out-wall: Effect of tube inclination on the heat transfer[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121296. |
7 | ZHANG Sheng, ZHAO Liang, FENG Junsheng, et al. Numerical investigation of the air-particles heat transfer characteristics of moving bed—Effect of particle size distribution[J]. International Journal of Heat and Mass Transfer, 2022, 182: 122036. |
8 | ZHENG Bin, SUN Peng, LIU Yongqi, et al. Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery[J]. Energy, 2018, 155: 56-65. |
9 | 邓升安, 楼国锋, 徐科珺, 等. 移动床固体颗粒绕流顺排圆管的过程[J]. 工程科学学报, 2018, 40(6): 735-742. |
DENG Sheng’an, LOU Guofeng, XU Kejun, et al. Particles flowing process across aligned tubes in a moving bed[J]. Chinese Journal of Engineering, 2018, 40(6): 735-742. | |
10 | NIE Fuliang, BAI Fengwu, WANG Zhifeng, et al. A CPFD simulation on the particle flow characteristics in a packed moving bed solar receiver with an added insert[J]. Solar Energy, 2021, 224: 1144-1159. |
11 | ZHOU Qi, ZHANG Xu, WANG Yan, et al. Pyrolysis behavior of coal in a moving bed with baffled internals under different residence times[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 703-711. |
12 | SUN Dong, LU Haifeng, CAO Jiakun, et al. Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert[J]. Powder Technology, 2020, 367: 277-284. |
13 | KOBYŁKA R, MOLENDA M, HORABIK J. Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis[J]. Powder Technology, 2019, 343: 521-532. |
14 | 宣颖, 刘雪东, 周成奇, 等. 粉体混合过程及搅拌功率的DEM数值模拟和实验[J]. 化工进展, 2021, 40(7): 3598-3607. |
XUAN Ying, LIU Xuedong, ZHOU Chengqi, et al. A discrete element method (DEM) simulation and experimental research on powder mixing process and stirring power[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3598-3607. | |
15 | 周琦, 张旭, 白效言, 等. 移动床中内构件对煤热解反应过程调控作用[J]. 化工进展, 2021, 40(3): 1334-1343. |
ZHOU Qi, ZHANG Xu, BAI Xiaoyan, et al. Regulation effect of internals in moving bed on coal pyrolysis reaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1334-1343. | |
16 | ZHENG Bin, SHEN Yingkai, SUN Peng, et al. Effects of particle sizes on performances of the multi-zone steam generator using waste heat in a bio-oil steam reforming hydrogen production system[J]. International Journal of Hydrogen Energy, 2021, 46(34): 18064-18072. |
17 | SHEN Yingkai, ZHENG Bin, SUN Peng, et al. Effects of ellipsoidal and regular hexahedral particles on the performance of the waste heat recovery equipment in a methanol reforming hydrogen production system[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11141-11152. |
18 | 郭岱昌, 郑斌, 梁浩天, 等. 内设横管束型换热器内大粒径颗粒流动分析[J]. 广西大学学报(自然科学版), 2018, 43(5): 1713-1722. |
GUO Daichang, ZHENG Bin, LIANG Haotian, et al. Flow analysis of large size particles in a heat exchanger with horizontal tube bundle[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(5): 1713-1722. | |
19 | TIAN Xing, YANG Jian, GUO Zhigang, et al. Numerical study of heat transfer in gravity-driven dense particle flow around a hexagonal tube[J]. Powder Technology, 2020, 367: 285-295. |
20 | TIAN Xing, GUO Zhigang, JIA Haonan, et al. Numerical investigation of a new type tube for shell-and-tube moving packed bed heat exchanger[J]. Powder Technology, 2021, 394: 584-596. |
21 | GUO Zhigang, TIAN Xing, WU Zhihong, et al. Heat transfer of granular flow around aligned tube bank in moving bed: experimental study and theoretical prediction by thermal resistance model[J]. Energy Conversion and Management, 2022, 257: 115435. |
22 | BARTSCH Philipp, ZUNFT Stefan. Granular flow around the horizontal tubes of a particle heat exchanger: DEM-simulation and experimental validation[J]. Solar Energy, 2019, 182: 48-56. |
23 | DAI Yeling, LIU Xiangjun, XIA Dehong. Flow characteristics of three typical granular materials in near 2D moving beds[J]. Powder Technology, 2020, 373: 220-231. |
24 | 刘义伦, 伍天翔, 赵先琼, 等. 颗粒物料在半封闭式回转鼓内的混合特性[J]. 化工进展, 2018, 37(5): 1687-1691. |
LIU Yilun, WU Tianxiang, ZHAO Xianqiong, et al. Mixing characteristic of granular materials in semi-closed rotary drum[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1687-1691. | |
25 | ZHANG Zhongliang, LIU Yongqi, ZHENG Bin, et al. Local percolation of non-spherical particles in moving bed waste heat recovery unit for hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11463-11475. |
26 | 邢凯, 高晓宏, 戴晓军, 等. 基于DEM-CFD耦合的气力式播种机分配器数值模拟与试验[J]. 中国农机化学报, 2022, 43(1): 39-46. |
XING Kai, GAO Xiaohong, DAI Xiaojun, et al. Numerical simulation and experiment of distribution head of air-blown seed drill based on DEM-CFD coupling[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 39-46. | |
27 | JIANG Binfan, XIA Dehong, ZHANG Huili, et al. Effective waste heat recovery from industrial high-temperature granules: A moving bed indirect heat exchanger with embedded agitation[J]. Energy, 2020, 208: 118346. |
28 | EBRAHIMI Mohammadreza, YARAGHI Amirsalar, JADIDI Behrooz, et al. Assessment of bi-disperse solid particles mixing in a horizontal paddle mixer through experiments and DEM[J]. Powder Technology, 2021, 381: 129-140. |
29 | JADIDI Behrooz, EBRAHIMI Mohammadreza, Farhad EIN-MOZAFFARI, et al. Mixing performance analysis of non-cohesive particles in a double paddle blender using DEM and experiments[J]. Powder Technology, 2022, 397: 117122. |
[1] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[2] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[3] | 凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244. |
[4] | 孙崇正, 樊欣, 李玉星, 许洁, 韩辉, 刘亮. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290. |
[5] | 刘君康, 王宏超, 熊通, 晏刚, 郭宁, 刘睿. 热泵空调翅片管换热器流路优化研究进展[J]. 化工进展, 2023, 42(1): 107-117. |
[6] | 刘世杰, 莫逊, 涂爱民, 朱冬生, 谭连元. 新型纵流油冷却器壳程强化传热[J]. 化工进展, 2022, 41(7): 3475-3482. |
[7] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[8] | 尹少武, 张朝, 康鹏, 韩嘉维, 王立. 硅粉氮化输送床内气固反应过程数值模拟[J]. 化工进展, 2022, 41(5): 2256-2267. |
[9] | 蒋宁, 张元毅, 范伟, 赵世超, 徐新杰, 徐英杰. 基于智能预测和机理模型的换热网络清洗决策[J]. 化工进展, 2022, 41(4): 1781-1792. |
[10] | 敬双怡, 刘超, 蔡怡婷, 李卫平, 于玲红, 侯娜. 低温下磁性载体强化MBBR硝化性能及微生物群落分析[J]. 化工进展, 2022, 41(4): 2180-2190. |
[11] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[12] | 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(S1): 13-26. |
[13] | 张海南, 丁京, 邵双全, 田长青. 具有相变的三介质换热器的![]() |
[14] | 蒋坤卿, 黄思浩, 李华山, 卜宪标. 单井增强型地热系统性能分析[J]. 化工进展, 2021, 40(5): 2536-2545. |
[15] | 于忠臣, 刘长春, 董喜贵, 刘书孟, 孙冰, 李可. 深层滤床反冲洗技术及其油田水处理领域应用进展[J]. 化工进展, 2021, 40(5): 2753-2761. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |