化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2753-2761.DOI: 10.16085/j.issn.1000-6613.2020-1215
于忠臣1(), 刘长春1, 董喜贵2, 刘书孟2, 孙冰2, 李可1
收稿日期:
2020-06-29
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
于忠臣
作者简介:
于忠臣(1975—),男,博士,副教授,硕士生导师,研究方向为水环境污染治理技术、动态反冲洗技术和难降解有机废水高级氧化技术。E-mail:基金资助:
YU Zhongchen1(), LIU Changchun1, DONG Xigui2, LIU Shumeng2, SUN Bing2, LI Ke1
Received:
2020-06-29
Online:
2021-05-06
Published:
2021-05-24
Contact:
YU Zhongchen
摘要:
深层滤床过滤作为油田污水高效处理最重要的环节之一,滤床稳定运行的关键在于有效反冲洗。随着含油废水中聚合物浓度不断增大,聚合物吸附和滞留于滤床内,与滤料颗粒相互黏结,滤床反冲洗不彻底,导致滤床板结、过滤效率降低甚至作用失效。为了解决这一问题,本文介绍了重力作用下滤料反冲洗再生原理,回顾了单独水反冲洗技术、气水联合反冲洗技术及其加载场强化水力反冲洗技术,提出了一种颗粒滤床复合场反冲洗的新方法,将旋流场加载于滤床重力场的水力反冲洗过程,可以突破重力作用下滤料反冲洗再生效率低的技术瓶颈,丰富和发展了滤床水力反冲洗理论,为油田颗粒滤床反冲洗再生开辟新途径。
中图分类号:
于忠臣, 刘长春, 董喜贵, 刘书孟, 孙冰, 李可. 深层滤床反冲洗技术及其油田水处理领域应用进展[J]. 化工进展, 2021, 40(5): 2753-2761.
YU Zhongchen, LIU Changchun, DONG Xigui, LIU Shumeng, SUN Bing, LI Ke. Deep bed backwashing process and its application progress in oily water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2753-2761.
1 | JAMES J S, BERND L, NASSER A. Status of polymer-flooding technology[J]. Journal of Canadian Petroleum Technology, 2015, 54(2): 116-126. |
2 | ABASS A O. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: prospects and challenges[J]. Energy, 2014, 77(12): 963-982. |
3 | JIMNEZ S, MICÓ M M, ARNALDOS M, et al. State of the art of produced water treatment[J]. Chemosphere, 2018, 192(2): 186-208. |
4 | RAUL D, ALTAF H, MARY K, et al. Using advanced water treatment technologies to treat produced water from the petroleum industry[C]// SPE International Production and Operations Conference & Exhibition, 2012. |
5 | FERNANDA C P, NATHALIA M P, JULIANA M, et al. Dissolved air flotation combined to biosurfactants: a clean and efficient alternative to treat industrial oily water[J]. Reviews in Environmental Science & Bio/Technology, 2018, 17(4): 591-602. |
6 | SAAD H A, AHMED S A. Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 879-885. |
7 | WANG Cunying, WANG Zhixin, WEI Xiangyong, et al. A numerical study and flotation experiments of bicyclone column flotation for treating of produced water from ASP flooding[J]. Journal of Water Process Engineering, 2019, 32(10): 972-979. |
8 | SI Shaoxiong, YAN Zhong, GONG Zhaobo, et al. Pilot study of oilfield wastewater treatment by micro-flocculation filtration process[J]. Water Science and Technology, 2018, 77(1/2): 101-107. |
9 | ZHANG Zhenchao. The floccultion mechanism and treatment of oily wastewater by flocculation[J]. Water Science & Technology, 2017, 76(10): 2630-2637. |
10 | MOTTA A, BORGES C, ESQUERRE K, et al. Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes[J]. Journal of Membrane Science, 2014, 469(7): 371-378. |
11 | ZHANG Zuoyou, DU Xuewei, CARLSON K, et al. Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration[J]. Desalination, 2019, 454(1): 82-90. |
12 | ZHANG HUI, BUKOSKY S C, RISTENPART W D. Low voltage electrical demulsification of oily wastewater[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8341-8347. |
13 | WEI Bigui, YUE Cheng, LIU Jianlin, et al. Fabrication of superhydrophilic and underwater superoleophobic quartz sand filter for oil/water separation[J]. Separation and Purification Technology, 2019, 229(15): 808-817. |
14 | VEERIAH J, VIGNESWARAN S. Transient stage deposition of submicron particles in deep bed filtration under unfavorable conditions[J]. Water Research, 2000, 34(7): 2119-2131. |
15 | BAI Renbi, CHI Tien. Particle detachment in deep bed filtration[J]. Journal of Colloid and Interface Science, 1997, 186(2): 307-317. |
16 | ZHAO Xiaofei, LIU Lixin, WANG Yuchan, et al. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding[J]. Separation and Purification Technology, 2008, 62(1): 199-204. |
17 | DE DEUS F P, MESQUITA M, RAMIREZ J C S, et al. Hydraulic characterisation of the backwash process in sand filters used in micro irrigation[J]. Biosystems Engineering, 2019, 192(1): 188-198. |
18 | SOYER E, AKGIRAY O. A new simple equation for the prediction of filter expansion during backwashing[J]. Journal of Water Supply: Research and Technology — AQUA, 2009, 58(5): 336-345. |
19 | ASHLEY P, ANDY C L, SHAWN C, et al. Investigation of backwash strategy on headloss development and particle release in drinking water biofiltration[J]. Journal of Water Process Engineering, 2019, 32: 100895. |
20 | YU Zhongchen, WANG Daxin, WANG Song, et al. Determination of theoretical time of axial dynamic backwashing method for deep bed filtration in oilfield[J]. Fresenius Environmental Bulletin, 2018, 27(10): 6876-6883. |
21 | RALANIVEL R. Mechanism of particle detachment during filter backwashing[D]. Atlanta: Georgia Institute Technology, 1993. |
22 | SHYH-JYE HWANG, CHANG DONG-JANG, CHEN CHAN-HWA. Steady state permeate flux for particle cross-flow flltration[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 61(3): 171-178. |
23 | CLEASBY J L, ARBOLEDA J, BURNS D E, et al. Backwashing of granular filters[J]. Journal American Water Works Association, 1977, 69(2): 115-126. |
24 | AMBURGEY J E. Optimization of the extended terminal subfluidization wash (ETSW) filter backwashing procedure[J]. Water Research, 2005, 39(2/3): 314-330. |
25 | IVES K J, FITZPATRICK C S B. Detachment of deposits from sand grains[J]. Colloids & Surfaces, 1989, 39(1): 239-253. |
26 | AMIRTHARAJAH A, CLEASBY J. Predicting expansion of filters during backwash[J]. Journal AWWA, 1972, 64(1): 52-59. |
27 | AMIRTHARAJAH A. Optimum backwashing of filters with air scour: a review[J]. Water Science & Technology, 1993, 27(10): 195-211. |
28 | SIWIEC T. The experimental verification of Richardson-Zakilaw on example of selected beds used in water treatment[J]. Electronic Journal of Polish Agricul Tural Univerites, 2007, 10(2): 1-23. |
29 | CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943(3): 219-237. |
30 | KAWAMURA S. Design and operation of high-rate filters—Part 2[J]. Journal American Water Works Association, 1975, 67(11): 653-662. |
31 | FITZPATRICK C S B. Observations of particle detachment during filter backwashing[J]. Water Science and Technology, 1993, 27(10): 213-221. |
32 | JACKSON D, CARVER B. Todays forecasts: it looks like snow[J]. Precision Cleaning, 1999, 8: 17-29. |
33 | LIU Yihung, MARUYAMA H, MATSUSAKA S. Effect of particle impact on surface cleaning using dry ice jet[J]. Aerosol Science and Technology, 2011, 45(12): 1519-1527. |
34 | TSAI Chuen Jinn, PUI D Y H, LIU B Y H. Elastic flattening and particle adhesion[J]. Aerosol Science and Technology, 1991, 15(4): 239-255. |
35 | FAN Liang-Shih, ZHU Chao. Principles of gas-solid flows[M]. Cambridge: Cambridge University Press, 1998: 947-948. |
36 | LIU Yihung, HIRAMA D, MATSUSAKA S. Particle removal process during application of impinging dry ice jet[J]. Powder Technology, 2012, 217(2): 607-613. |
37 | 李圭白. 深层滤床的高效反冲洗问题[J]. 中国给水排水, 1985, 1(2): 3-8. |
LI Guibai. On the high effect backwashing of granular media deep-bed[J]. China Water & Wastewater, 1985, 1(2): 3-8. | |
38 | 范瑾初. 滤池反冲洗理论和实际反冲洗强度的控制[J]. 水处理技术, 1985, 11(2): 25-29. |
FAN Jinchu. Backwashing theory and controlling on the practical backwashing flow rate in the rapid sand filters[J]. Technology of Water Treatment, 1985, 11(2): 25-29. | |
39 | 于忠臣, 牛源麟, 李转, 等. 含聚浓度对轴向动态反冲洗法过滤和反冲洗效能的影响[J]. 化学通报, 2015, 78(8): 733-737. |
YU Zhongchen, NIU Yuanlin, LI Zhuan, et al. Effect of polymer concentration on filtration and backwashing process by the axial dynamic backwashing method[J]. Chemistry, 2015, 78(8): 733-737. | |
40 | COBOS B Y L, GONZALEZ M S. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter[J]. Water Science and Technology, 2013, 68(9): 2000-2006. |
41 | MOHAMMED R N, ABUALHAIL S, LÜ X. Fluidization of fine particles and its optimal operation condition in multimedia water filter[J]. Desalination and Water Treatment, 2013, 51(22/23/24): 4768-4778. |
42 | ZONG Quanli, LIU Zhenji, LIU Huanfang, et al. Backwashing performance of self-cleaning screen filters in drip irrigation systems[J]. PLOS One, 2019, 14(12): 1-18. |
43 | BROUCKAERT B, AMIRTHARAJAH A, BROUCKAERT C, et al. Predicting the efficiency of deposit removal during filter backwash[J]. Water SA, 2006, 32(5): 633-640. |
44 | SLEZAK L A, SIMS R C. The application and effectiveness of slow sand filtration in the United States[J] Journal American Water Works Association, 1984, 76(12): 38-43. |
45 | MARA D, HORAN N J. Handbook of water and wastewater microbiology[M]. London: Academic Press, 2003: 633-655. |
46 | KALINSKE A A. Advances in water supply technology[J]. Journal AWWA, 1960, 52(2): 199-204. |
47 | BAYLIS J R. Review of filter bed design and methods of washing[J]. Journal AWWA, 1959, 51(11): 1433-1454. |
48 | AMIRTHARAJAH A. Fundamentals and theory of air scour[J]. Journal of Environmental Engineering, 1984, 110(3): 573-590. |
49 | HEWITT S, AMIRTHARAJAH A. Air dynamics through filter media during air scour[J]. Journal of Environmental Engineering, 1984, 110(3): 591-606. |
50 | YANG Jinshui, LIU Weijie, LI Baozhen, et al. Application of a novel backwashing process in upflow biological aerated filter[J]. Journal of Environmental Sciences, 2010, 22(3): 362-366. |
51 | FU Liya, WU Changyong, ZHOU Yuexi, et al. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater[J]. Environmental Technology, 2017, 38(20): 2523-2533. |
52 | PARK N S, YOON S M, KIM S H, et al Effects of bubble size on air-scoured backwashing efficiency in a biofilter[J]. Desalination and Water Treatment, 2015, 57(16): 1-7. |
53 | SCHOLZ M. Wetlands for water pollution control[M]. 2nd ed. Elsevier Science, 2016: 69-75. |
54 | MOTA M H, PATIL P S, SALKAR V. Improving the performance of rapid sand filter using coarser and more uniform media with poly-aluminum chloride as filter aid[J]. International Journal of Civil Engineering and Technology, 2019, 10(2): 988-998. |
55 | 倪士忠, 丁云鹤. 整体浇筑滤板与可调式滤头在气水反冲滤池中的应用[C]//全国给水排水技术信息网年会, 海口, 2005. |
NI Shizhong, DING Yunhe. Application of integrated poured filter plate and adjustable strainer head in air/water backwashing filterC]// Annual Meeting of National Water Supply and Drainage Technology Information Network, Haikou, 2005. | |
56 | HAN S J, FITZPATRICK C S, WETHERILL A. Simulation on combined rapid gravity filtration and backwash models[J]. Water Science and Technology, 2009, 60(5): 1361-1368. |
57 | KIM Seung-Hyun, Hwan-Kyu LIM, JEONG Woo-Chang, et al. Optimum backwash method for granular media filtration of seawater[J]. Desalination and Water Treatment, 2011, 32(1/2/3): 431-436. |
58 | 李景海, 蔡九茂, 翟国亮, 等. 基于砂滤层内水体积分数瞬态模拟的反冲洗速度优选[J]. 农业工程学报, 2018, 34(2): 83-89. |
LI Jinghai, CAI Jiumao, ZHAI Guoliang, et al. Optimization of backwashing speed based on transient simulation of water volume fraction in sand filter layer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 83-89. | |
59 | YIN Ruiyu. Theory and methods of metallurgical process integration[M]. New York: Academic Press, 2016: 115-178. |
60 | MAHVI A. Application of ultrasonic technology for water and wastewater treatment[J]. Iranian Journal of Public Health, 2009, 38(2): 1-17. |
61 | PIRKONEN P, GRONROOS A, HEIKKINEN J. Ultrasound assisted cleaning of ceramic capillary filter[J]. Ultrasonics Sonochemistry, 2010, 17(6): 1060-1065. |
62 | MASON T J. Ultrasonic cleaning: an historical perspective[J]. Ultrasonics Sonochemistry, 2016, 29: 519-523. |
63 | PI GmbH&Co.KG. Industrial ultrasonic cleaning with high-power ultrasound[EB/OL].[2020-06-27]. . |
64 | WANG Jian, GAO Xueli, XU Yuan, et al. Ultrasonic-assisted acid cleaning of nanofiltration membranes fouled by inorganic scales in arsenic-rich brackish water[J]. Desalination, 2016, 377(1): 172-177. |
65 | NGUYEN Dinh Duc, Huu Hao NGO, YOON Yong Soo, et al. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines’ oil filters under practical conditions[J]. Ultrasonics Sonochemistry, 2016, 71: 256-263. |
66 | PICHE A, CAMPBELL A, CLEARY S, et al. Investigation of backwash strategy on headloss development and particle release in drinking water biofiltration[J]. Journal of Water Process Engineering, 2019, 32(12): 1-9. |
67 | 于忠臣. 基于油田组合滤料过滤器复合场反冲洗与过滤机制研究[D]. 大庆: 东北石油大学, 2019. |
YU Zhongchen. Research on coupled field backwashing and filtration mechanism based on dual bed filters for oilfield wastewater[D]. Daqing: Northeast Petroleum University, 2019. | |
68 | 王松, 于忠臣, 申家年, 等. 过滤器的水力动态反冲洗装置及反冲洗方法: CN103055556A[P]. 2013-04-24. |
WANG Song, YU Zhongchen, SHEN Jianian, et al. Hydraulic dynamic backwashing device and filter backwashing method: CN103055556A[P]. 2013-04-24. | |
69 | 董喜贵, 刘书孟, 于忠臣, 等. 轴向动态反冲洗过滤器过滤含聚污水试验研究[J]. 工业水处理, 2015, 35(1): 86-89. |
DONG Xigui, LIU Shumeng, YU Zhongchen, et al. Experimental study on the filtration of wastewater containing polymer by axial dynamic backwashing filter[J]. Industrial Water Treatment, 2015, 35(1): 86-89. |
[1] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[2] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[3] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
[6] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[7] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[8] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[9] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[10] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[11] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[12] | 袁礼, 王学谦, 李翔, 王郎郎, 马懿星, 宁平, 熊亦然. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
[13] | 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271. |
[14] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
[15] | 黄伟, 储政, 任磊, 李珊. 碳基固体酸在硝基苯加氢制备对氨基苯酚中的应用[J]. 化工进展, 2023, 42(1): 272-281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |