1 |
NI B J, RITTMANN B E, YU H Q. Soluble microbial products and their implications in mixed culture biotechnology[J]. Trends in Biotechnology, 2011, 29(9): 454-463.
|
2 |
MENNITI A, KANG S, ELIMELECH M, et al. Influence of shear on the production of extracellular polymeric substances in membrane bioreactors[J]. Water Research, 2009, 43(17): 4305-4315.
|
3 |
ZHUO X C, HUANG H Y, LAN F, et al. Molecular transformation of dissolved organic matter in high-temperature hydrogen peroxide oxidation of a refinery wastewater[J]. Environmental Chemistry Letters, 2019, 17(2): 1117-1123.
|
4 |
ALLARD S, GUTIERREZ L, FONTAINE C, et al. Organic matter interactions with natural manganese oxide and synthetic birnessite[J]. Science of the Total Environment, 2017, 583: 487-495.
|
5 |
HE H, HAN F X, SUN S J, et al. Photosensitive cellular polymeric substances accelerate 17α-ethinylestradiol photodegradation[J]. Chemical Engineering Journal, 2020, 381: 122737.
|
6 |
HUANG B, LAI C C, DAI H, et al. Microbially reduced humic acid promotes the anaerobic photodegradation of 17α-ethinylestradiol[J]. Ecotoxicology and Environmental Safety, 2019, 171: 313-320.
|
7 |
REN D, BI T T, GAO S M, et al. Photodegradation of 17 alpha-ethynylestradiol in nitrate aqueous solutions[J]. Environmental Engineering Research, 2016, 21(2): 188-195.
|
8 |
REN D, HUANG B, XIONG D, et al. Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: kinetics, mechanism and estrogenicity variation[J]. Journal of Environmental Sciences, 2017, 54: 196-205.
|
9 |
HE W, HUR J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter [J]. Water Research, 2015, 83: 217-226.
|
10 |
VIONE D, FABBRI D, MINELLA M, et al. Effects of the antioxidant moieties of dissolved organic matter on triplet-sensitized phototransformation processes: Implications for the photochemical modeling of sulfadiazine[J]. Water Research, 2018, 128: 38-48.
|
11 |
APPIANI E, OSSOLA R, LATCH D E, et al. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content[J]. Environmental Science-Processes & Impacts, 2017, 19(4): 507-516.
|
12 |
LIN V S, GRANDBOIS M, MCNEILL K. Fluorescent molecular probes for detection of one-electron oxidants photochemically generated by dissolved organic matter[J]. Environmental Science & Technology, 2017, 51(16): 9033-9041.
|
13 |
CORY R M, CRUMP B C, DOBKOWSKI J A, et al. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3429-3434.
|
14 |
MIGNONE R A, MARTIN M V, MORÁN VIEYRA F E, et al. Modulation of optical properties of dissolved humic substances by their molecular complexity[J]. Photochemistry and Photobiology, 2012, 88(4): 792-800.
|
15 |
DALZELL B J, MINOR E C, MOPPER K M. Photodegradation of estuarine dissolved organic matter: A multi-method assessment of DOM transformation[J]. Organic Geochemistry, 2009, 40(2): 243-257.
|
16 |
LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 2018, 348: 100-108.
|
17 |
RESZKA K J, MCCORMICK M L, BRITIGAN B E. Oxidation of anthracycline anticancer agents by the peroxidase mimic microperoxidase 11 and hydrogen peroxide[J]. Free Radical Biology and Medicine, 2003, 35(1): 78-93.
|
18 |
WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
|
19 |
WU H, CHEN Z H, SHENG F, et al. Characterization for the transformation of dissolved organic matters during ultraviolet disinfection by differential absorbance spectroscopy[J]. Chemosphere, 2020, 243: 125374.
|
20 |
WAN D, KONG Y Q, SELVINSIMPSON S, et al. Effect of UV254 disinfection on the photoformation of reactive species from effluent organic matter of wastewater treatment plant[J]. Water Research, 2020, 185: 116301.
|
21 |
PRETSCH E, BÜHLMANN P, BADERTSCHER M. 有机化合物结构鉴定: 光谱数据手册[M]. 4版. 北京: 科学出版社, 2012.PRETSCHE, PRETSCHE, BÜHLMANNP, BADERTSCHERM. Structure determination of organic cobmpounds: Tables of spectral data[M]. 4th ed. Beijing: Science Press, 2012.
|
22 |
ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-2017.
|
23 |
HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching[J]. Aquatic Sciences, 2014, 76(3): 353-373.
|
24 |
REN D, HUANG B, YANG B Q, et al. Photobleaching alters the photochemical and biological reactivity of humic acid towards 17 alpha-ethynylestradiol[J]. Environmental Pollution, 2017, 220: 1386-1393.
|
25 |
COTTRELL B A, TIMKO S A, DEVERA L, et al. Photochemistry of excited-state species in natural waters: A role for particulate organic matter[J]. Water Research, 2013, 47(14): 5189-5199.
|
26 |
TANDY S, HEALEY J R, NASON M A, et al. FT-IR as an alternative method for measuring chemical properties during composting[J]. Bioresource Technology, 2010, 101(14): 5431-5436.
|
27 |
PETERSEN H I, ROSENBERG P, NYTOFT H P. Oxygen groups in coals and alginite-rich kerogen revisited[J]. International Journal of Coal Geology, 2008, 74(2): 93-113.
|
28 |
顾丽鹏, 何欢, 胥志祥, 等. 可溶性有机质生物改性介导17β-雌二醇生物降解作用[J]. 中国环境科学, 2016, 36(2): 468-475.
|
|
GU Lipeng, HE Huan, XU Zhixiang, et al. Dissolved organic matters bio-modification mediated 17β-estradiol biodegradation[J]. China Environmental Science, 2016, 36(2): 468-475.
|
29 |
TAN X L, FANG M, LI J X, et al. Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid[J]. Journal of Hazardous Materials, 2009, 168(1): 458-465.
|
30 |
ZHOU Z B, HE X, ZHOU M H, et al. Chemically induced alterations in the characteristics of fouling-causing bio-macromolecules—Implications for the chemical cleaning of fouled membranes[J]. Water Research, 2017, 108: 115-123.
|
31 |
DU Y, WU Q Y, LYU X T, et al. Electron donating capacity reduction of dissolved organic matter by solar irradiation reduces the cytotoxicity formation potential during wastewater chlorination[J]. Water Research, 2018, 145: 94-102.
|
32 |
DAI H, HE H, LAI C C, et al. Modified humic acids mediate efficient mineralization in a photo-bio-electro-Fenton process[J]. Water Research, 2021, 190: 116740.
|
33 |
DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide[J]. Environmental Science & Technology, 2010, 44(15): 5824-5829.
|
34 |
DE LUCAS N C, RUIS C P, TEIXEIRA R I, et al. Photosensitizing properties of triplet furano and pyrano-1,2-naphthoquinones[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2014, 276: 16-30.
|
35 |
杜超, 程德义, 代静玉, 等. 不同来源溶解性有机质在光辐射下产生活性氧基团能力的差异[J]. 环境科学学报, 2019, 39(7): 2279-2287.
|
|
DU Chao, CHENG Deyi, DAI Jingyu, et al. Differences in the ability of dissolved organic matter from different sources to produce reactive oxygen species under light irradiation[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2279-2287.
|
36 |
ZHANG D N, YAN S W, SONG W H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter[J]. Environmental Science & Technology, 2014, 48(21): 12645-12653.
|