1 |
DONG S, FENG J, FAN M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review [J]. RSC Advances, 2015, 5(19): 14610-14630.
|
2 |
谷学谦, 董秀芹, 张敏华, 等. 固定化光催化氧化技术研究进展 [J]. 化学反应工程与工艺, 2003, 19(4): 379-384.
|
|
GU Xueqian, DONG Xiuqin, ZHANG Minhua, et al. Research progress of immobilized photocatalytic oxidation technology [J]. Chemical Reaction Engineering and Technology, 2003, 19(4): 379-384.
|
3 |
郑猛猛. 半导体异质结光催化剂的制备及其可见光催化性能研究 [D]. 广州: 华南理工大学, 2016.
|
|
ZHENG Mengmeng. Preparation of semiconductor heterojunction photocatalyst and its visible light catalytic performance [D].Guangzhou: South China University of Technology, 2016.
|
4 |
王丹军, 张洁, 郭莉,等. 基于能带结构理论的半导体光催化材料改性策略 [J]. 无机材料学报, 2015, 30(7): 683-693.
|
|
WANG Danjun, ZHANG Jie, GUO Li, et al. Modification strategy of semiconductor photocatalytic materials based on energy band structure theory [J]. Journal of Inorganic Materials, 2015, 30(7): 683-693.
|
5 |
李贞燕, 陈冰. 纳米二氧化钛光催化氧化油田采出水中萘和芴的影响因素分析 [J]. 环境工程学报, 2015, 9(5): 2106-2112.
|
|
LI Zhenyan, CHEN Bing. Analysis of influencing factors of nano-titanium dioxide photocatalytic oxidation of naphthalene and fluorene in oil field produced water [J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2106-2112.
|
6 |
JITPUTTI J, SUZUKI Y, YOSHIKAWA S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution [J]. Catalysis Communications, 2008, 9(6): 1265-1271.
|
7 |
DIEBOLD U. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48(5-8): 53-229.
|
8 |
ZHANG S, GU P, MA R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review [J]. Catalysis Today, 2019, 335:65-77.
|
9 |
黄飞, 李祺, 罗森, 等. ZnIn2S4/MIL-125复合纳米材料的制备及光催化活性[J]. 硅酸盐学报, 2021,49(6):1-9.
|
|
HUANG Fei, LI Qi, LUO Sen, et al. Preparation and photocatalytic activity of ZnIn2S4/MIL-125 composite nanomaterials [J]. Journal of the Chinese Ceramic Society, 2021, 49(6):, 1-9.
|
10 |
PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications [J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2013, 15(8): 1-20.
|
11 |
林容斌. 染料敏化的MOFs光催化剂的合成、表征及其光催化性能研究[D]. 金华: 浙江师范大学, 2019.
|
|
LIN Rongbin. Synthesis, characterization and photocatalytic performance of dye-sensitized MOFs photocatalyst[D]. Jinhua: Zhejiang Normal University, 2019.
|
12 |
LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews Journal, 2015, 44(1): 362-381.
|
13 |
MARTINDALE B C, HUTTON G A, CAPUTO C A, et al. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst [J]. Journal of the American Chemical Society, 2015, 137(18): 6018-6025.
|
14 |
GUPTA S, TOMAR M, GUPTA V. Enhanced magnetic and electric properties of nanocrystalline Ce modified BFO thin films [J]. Ferroelectrics, 2014, 470(1): 272-279.
|
15 |
黄仕元, 王振宇, 李胜, 等. 铁酸铋光催化剂改性的研究进展 [J]. 精细化工, 2021, 38(1): 17-22.
|
|
HUANG Shiyuan, WANG Zhenyu, LI Sheng, et al. Research progress on modification of bismuth ferrite photocatalyst [J]. Fine Chemicals, 2021, 38(1): 17-22.
|
16 |
MAULIDIYAH, AZIS T, NURWAHIDAH A T, et al. Photoelectrocatalyst of Fe co-doped N-TiO2 /Ti nanotubes: pesticide degradation of thiamethoxam under UV-visible lights [J]. Environmental Nanotechnology, Monitoring & Management, 2017, 8:103-111.
|
17 |
ZOU M, XIONG F, GANESHRAJA A S, et al. Visible light photocatalysts (Fe, N): TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres [J]. Materials Chemistry and Physics, 2017, 195:259-267.
|
18 |
YUAN R, ZHOU B, HUA D, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification [J]. Journal of Hazardous Materials, 2013, 262:527-538.
|
19 |
YUAN R, WANG S, LIU D, et al. Effect of the wavelength on the pathways of 2-MIB and geosmin photocatalytic oxidation in the presence of Fe-N co-doped TiO2[J]. Chemical Engineering Journal, 2018, 353:319-328.
|
20 |
李龙. 异质结构复合半导体光催化性能研究 [J]. 广州化工, 2017, 45(2): 22-24.
|
|
LI Long. Study on the photocatalytic performance of heterostructure compound semiconductors [J]. Guangzhou Chemical Industry, 2017, 45(2): 22-24.
|
21 |
CHENG J, SHEN Y, CHEN K, et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation [J]. Chinese Journal of Catalysis, 2018, 39(4): 810-820.
|
22 |
YAPARATNE S, TRIPP C P, AMIRBAHMAN A. Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts [J]. Journal of Hazardous Materials, 2018, 346: 208-217.
|
23 |
何菲, 孟爱云, 程蓓, 等. 石墨烯修饰三氧化钨/二氧化钛S型异质结增强的光催化产氢活性(英文) [J]. 催化学报, 2020, 41(1): 13-24.
|
|
HE Fei, MENG Aiyun, CHENG Bei, et al. Enhanced photocatalytic hydrogen production activity of graphene-modified tungsten trioxide/titanium dioxide S-type heterojunction (English) [J]. Chinese Journal of Catalysis, 2020, 41(1): 13-24.
|
24 |
薛金娟. 基于贵金属的复合光催化材料的制备及其性能研究[D]. 南京: 东南大学, 2016.
|
|
XUE Jinjuan. Preparation and performance study of composite photocatalytic materials based on precious metals [D]. Nanjing: Southeast University, 2016.
|
25 |
DUAN Y, LUO J, ZHOU S, et al. TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO [J]. Applied Catalysis B: Environmental, 2018, 234:206-212.
|
26 |
LAWTON L. The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis [J]. Applied Catalysis B: Environmental, 2003, 44(1): 9-13.
|
27 |
FOTIOU T, TRIANTIS T M, KALOUDIS T, et al. Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: intermediates and degradation pathways [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286:1-9.
|
28 |
周舟. ICPB技术去除两种典型异嗅物质的性能研究 [D].杭州: 浙江大学, 2020.
|
|
ZHOU Zhou. Research on the performance of ICPB technology to remove two typical odorous substances [D]. Hangzhou: Zhejiang University, 2020.
|
29 |
刘芭. TiO2光催化杂化超滤膜对水中嗅味物质及腐殖酸去除的研究 [D]. 上海: 上海交通大学, 2013.
|
|
LIU Ba. Study on the removal of odorants and humic acid by TiO2 photocatalytic hybrid ultrafiltration membrane [D]. Shanghai: Shanghai Jiaotong University, 2013.
|
30 |
MAHON J MAC, PILLAI S C, KELLY J M, et al. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, PhiX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system [J]. Journal of Photochemistry and Photobiology B, 2017, 170:79-90.
|
31 |
于小迪, 王洪波, 刘麒, 等. 二氧化钛光催化消毒技术在水处理中的研究 [J]. 环境科学与管理, 2013, 38(1): 81-86.
|
|
YU Xiaodi, WANG Hongbo, LIU Qi, et al. Research on titanium dioxide photocatalytic disinfection technology in water treatment [J]. Environmental Science and Management, 2013, 38(1): 81-86.
|
32 |
CHENG Rong, SHEN Liangjie, YU Jinhui, et al. Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism[J]. Catalysts, 2018, 8(10): 406-421.
|
33 |
王晓婷, 刘洪君, 李映辉, 等. 连续流光催化消毒器灭活E.coli及病毒的性能 [J]. 环境科学学报, 2018, 38(9): 3645-3651.
|
|
WANG Xiaoting, LIU Hongjun, LI Yinghui, et al. Inactivation of E. coli and viruses by continuous stream photocatalytic disinfector [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3645-3651.
|
34 |
钟欣, 阮韬, 白壑平,等. 铜掺杂钒酸铋光催化降解橙黄Ⅱ废水及其机理 [J]. 环境工程学报, 2021, 15(3): 857-866.
|
|
ZHONG Xin, RUAN Tao, BAI Heping, et al. Photocatalytic degradation of orange-yellow Ⅱ wastewater by copper-doped bismuth vanadate and its mechanism [J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 857-866.
|
35 |
彭小明, 罗文栋, 胡玉瑛, 等. 磷掺杂的介孔石墨相氮化碳光催化降解染料 [J]. 中国环境科学, 2019, 39(8): 3277-3285.
|
|
PENG Xiaoming, LUO Wendong, HU Yuying, et al. Phosphorus-doped mesoporous graphite phase carbon nitride photocatalytic degradation of dyes [J]. China Environmental Science, 2019, 39(8): 3277-3285.
|
36 |
CHEN S, ZAFFRAN J, YANG B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction [J]. ACS Catalysis, 2020, 10(5): 3074-3083.
|
37 |
CHEN W, YANG Z, XIE Z, et al. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(Ⅵ) [J]. Journal of Materials Chemistry A, 2019, 7(3): 998-1004.
|
38 |
YOU S, HU Y, LIU X, et al. Synergetic removal of Pb(Ⅱ) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Applied Catalysis B: Environmental, 2018, 232:288-298.
|
39 |
李小燕, 陈超, 刘义保, 等. CuO/BiFeO3异质结光催化还原溶液中U(Ⅵ)的性能 [J]. 中国有色金属学报, 2020, 30(6): 1389-1398.
|
|
LI Xiaoyan, CHEN Chao, LIU Yibao, et al. Performance of CuO/BiFeO3 heterojunction photocatalytic reduction of U(Ⅵ) in solution [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1389-1398.
|
40 |
ADHAM S, HUSSAIN A, MINIER-MATAR J, et al. Membrane applications and opportunities for water management in the oil & gas industry [J]. Desalination, 2018, 440: 2-17.
|
41 |
胡天佑, 唐瑾, 陈志莉. 石油工业含油废水处理进展[J].水处理技术, 2021, 47(6): 12-17.
|
|
HU Tianyou, TANG Jin, CHEN Zhili. Progress in oily wastewater treatment in petroleum industry[J]. Water Treatment Technology, 2021,47(6): 12-17.
|
42 |
SHAHREZAEI F, MANSOURI Y, ZINATIZADEH A A L, et al. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles [J]. Powder Technology, 2012, 221: 203-212.
|
43 |
张运鸽. 用于含油废水净化的TiO2光催化复合材料的研究 [D]. 天津: 天津大学, 2015.
|
|
ZHANG Yunge. Research on TiO2 photocatalytic composite material for purification of oily wastewater [D]. Tianjin: Tianjin University, 2015.
|
44 |
MOKHBI Y, KORICHI M, AKCHICHE Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment [J]. Applied Water Science, 2019, 9(2): 35.
|
45 |
OCHIAI T, FUJISHIMA A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247-262.
|