化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1961-1973.DOI: 10.16085/j.issn.1000-6613.2022-1187
常晓青1(), 彭东来1,2(), 李东洋1, 张延武1, 王景1(), 张亚涛1
收稿日期:
2022-06-27
修回日期:
2022-08-29
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
彭东来,王景
作者简介:
常晓青(1997—),女,硕士研究生,研究方向为气体膜分离。E-mail:changxqing@163.com。
基金资助:
CHANG Xiaoqing1(), PENG Donglai1,2(), LI Dongyang1, ZHANG Yanwu1, WANG Jing1(), ZHANG Yatao1
Received:
2022-06-27
Revised:
2022-08-29
Online:
2023-04-25
Published:
2023-05-08
Contact:
PENG Donglai, WANG Jing
摘要:
丙烯是三大合成材料的基本原料之一,在国民经济中占有十分重要的地位,但其生产过程存在分离与纯化能耗较高的问题。将功能纳米填料引入聚合物基质制备的混合基质膜具有良好的渗透选择性,有望大幅降低丙烯分离与纯化所需的能耗,是膜分离领域的研究热点。本文综述了聚合物结构对丙烯/丙烷膜分离性能的影响规律,总结了混合基质膜丙烯/丙烷分离性能的重要影响因素。然后,分别从聚合物基质和MOFs填料入手,介绍了MOFs基丙烯/丙烷高效分离混合基质膜的研究现状,并从改善界面相容性、调控膜填料结构和调控膜基质结构三个方面,详细讨论了混合基质膜分离性能的优化方法。最后,针对混合基质膜丙烯/丙烷分离过程中存在的问题,对丙烯、丙烷分子在混合基质膜中传递机制进行了深入的分析,并对丙烯/丙烷分离混合基质膜的设计制备和应用研究进行了展望。
中图分类号:
常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973.
CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973.
聚合物 | 测试温度/℃ | 原料侧压力/atm | 自由体积分数FFV/% | 丙烯渗透通量/Barrer | 选择性C3H6/C3H8 | 参考文献 |
---|---|---|---|---|---|---|
Matrimid® | 35 | 2.0 | — | 0.10 | 10.0 | [ |
6FDA-mPD | 35 | 3.8 | 15.6 | 0.13 | 10.0 | [ |
6FDA–IPDA | 35 | 3.8 | 16.8 | 0.58 | 15.0 | [ |
6FDA-6FpDA | 35 | 3.8 | 19.0 | 0.89 | 16.0 | [ |
6FDA-DDBT | 50 | 2.0 | 16.9 | 0.76 | 27.0 | [ |
6FDA-TrMPD | 50 | 2.0 | 18.2 | 30 | 11.0 | [ |
6FDA-TeMPD | 50 | 2.0 | 18.2 | 37 | 7.0 | [ |
PIM-PI-OH (250℃) | 35 | 2.0 | — | 3.50 | 30.0 | [ |
PIM | 30 | 1.0 | 22.0 | 1051 | 7.5 | [ |
KAUST-PI-1 | 35 | 2.0 | — | 817 | 16 | [ |
表1 聚酰亚胺对丙烯/丙烷分离性能举例
聚合物 | 测试温度/℃ | 原料侧压力/atm | 自由体积分数FFV/% | 丙烯渗透通量/Barrer | 选择性C3H6/C3H8 | 参考文献 |
---|---|---|---|---|---|---|
Matrimid® | 35 | 2.0 | — | 0.10 | 10.0 | [ |
6FDA-mPD | 35 | 3.8 | 15.6 | 0.13 | 10.0 | [ |
6FDA–IPDA | 35 | 3.8 | 16.8 | 0.58 | 15.0 | [ |
6FDA-6FpDA | 35 | 3.8 | 19.0 | 0.89 | 16.0 | [ |
6FDA-DDBT | 50 | 2.0 | 16.9 | 0.76 | 27.0 | [ |
6FDA-TrMPD | 50 | 2.0 | 18.2 | 30 | 11.0 | [ |
6FDA-TeMPD | 50 | 2.0 | 18.2 | 37 | 7.0 | [ |
PIM-PI-OH (250℃) | 35 | 2.0 | — | 3.50 | 30.0 | [ |
PIM | 30 | 1.0 | 22.0 | 1051 | 7.5 | [ |
KAUST-PI-1 | 35 | 2.0 | — | 817 | 16 | [ |
样品 | 扩散系数/109cm2·s-1 | 扩散选择性 | 溶解系数(标准状况) /0.0075cm3·cm-3·Pa-1 | 溶解选择性 | 渗透通量/Barrer | 选择性 | |||
---|---|---|---|---|---|---|---|---|---|
丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | |
PI | 5.29±0.14 | 0.51±0.01 | 10.40±0.10 | 3.17±0.06 | 2.87±0.13 | 1.10±0.03 | 16.63±0.14 | 1.47±0.05 | 11.30±0.30 |
PZ67-20 | 7.72±0.06 | 0.31±0.01 | 24.80±0.20 | 4.40±0.09 | 3.66±0.11 | 1.20±0.01 | 34.14±0.04 | 1.14±0.01 | 29.90±0.20 |
PZ8-20 | 8.09±0.08 | 0.43±0.04 | 18.70±1.60 | 4.67±0.14 | 4.18±0.30 | 1.10±0.04 | 37.73±0.56 | 1.82±0.06 | 20.70±0.40 |
表2 ZIF-67/PI、ZIF-8/PI混合基质膜对丙烯/丙烷分离性能对比[23]
样品 | 扩散系数/109cm2·s-1 | 扩散选择性 | 溶解系数(标准状况) /0.0075cm3·cm-3·Pa-1 | 溶解选择性 | 渗透通量/Barrer | 选择性 | |||
---|---|---|---|---|---|---|---|---|---|
丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | |
PI | 5.29±0.14 | 0.51±0.01 | 10.40±0.10 | 3.17±0.06 | 2.87±0.13 | 1.10±0.03 | 16.63±0.14 | 1.47±0.05 | 11.30±0.30 |
PZ67-20 | 7.72±0.06 | 0.31±0.01 | 24.80±0.20 | 4.40±0.09 | 3.66±0.11 | 1.20±0.01 | 34.14±0.04 | 1.14±0.01 | 29.90±0.20 |
PZ8-20 | 8.09±0.08 | 0.43±0.04 | 18.70±1.60 | 4.67±0.14 | 4.18±0.30 | 1.10±0.04 | 37.73±0.56 | 1.82±0.06 | 20.70±0.40 |
1 | ROY A, VENNA S R, ROGERS G, et al. Membranes for olefin-paraffin separation: an industrial perspective[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022194118. |
2 | 刘治华, 李宇静. 中国丙烯市场回顾及“十四五”展望[J]. 现代化工, 2021, 41(8): 16-18. |
LIU Zhihua, LI Yujing. Review of China’s propylene market and outlook for 2021—2025 period[J]. Modern Chemical Industry, 2021, 41(8): 16-18. | |
3 | CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
4 | AMEDI H R, AGHAJANI M. Economic estimation of various membranes and distillation for propylene and propane separation[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4366-4376. |
5 | SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
6 | LIVELY R P. The refinery of today, tomorrow, and the future: A separations perspective[J]. AIChE Journal, 2021, 67(7): e17286. |
7 | CHEN Xiaoyuan, XIAO Anguo, RODRIGUE D. Polymer-based membranes for propylene/propane separation[J]. Separation & Purification Reviews, 2022, 51(1): 130-142. |
8 | HOU Junjun, LIU Pengchao, JIANG Meihuizi, et al. Olefin/paraffin separation through membranes: from mechanisms to critical materials[J]. Journal of Materials Chemistry A, 2019, 7(41): 23489-23511. |
9 | KOROS W J, ZHANG Chen. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
10 | HAMID M R A, JEONG H K. Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges[J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1577-1600. |
11 | LIU Yang, LIU Gongping, ZHANG Chen, et al. Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations[J]. Advanced Science, 2018, 5(9): 1800982. |
12 | QIAN Qihui, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
13 | DATTA S J, MAYORAL A, MURTHY SRIVATSA BETTAHALLI N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
14 | FAN Yanfang, WANG Xueli, LI Nanwen. Interfacial manipulation of MOFs/polymer mixed matrix membranes for gas separations: a review[J]. Chinese Science Bulletin, 2021, 66(23): 2930-2942. |
15 | CHUAH C Y, BAE T H. Recent advances in mixed-matrix membranes for light hydrocarbon (C1—C3) separation[J]. Membranes, 2022, 12(2): 201. |
16 | ROBESON L M, LIU Qiang, FREEMAN B D, et al. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship[J]. Journal of Membrane Science, 2015, 476: 421-431. |
17 | CAMPOS A C C, DOS REIS R A, ORTIZ A, et al. A perspective of solutions for membrane instabilities in olefin/paraffin separations: A review[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10071-10085. |
18 | REN Yanxiong, LIANG Xu, DOU Haozhen, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
19 | MIZRAHI RODRIGUEZ K, BENEDETTI F M, ROY N, et al. Sorption-enhanced mixed-gas transport in amine functionalized polymers of intrinsic microporosity (PIMs)[J]. Journal of Materials Chemistry A, 2021, 9(41): 23631-23642. |
20 | GENDUSO G, WANG Y G, GHANEM B S, et al. Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: the effect of intrachain rigidity on plasticization resistance[J]. Journal of Membrane Science, 2019, 584: 100-109. |
21 | GUO Meng, KANEZASHI M. Recent progress in a membrane-based technique for propylene/propane separation[J]. Membranes, 2021, 11(5): 310. |
22 | LIANG Bin, ZHANG Xin, XIE Yi, et al. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane[J]. Journal of the American Chemical Society, 2020, 142: 17795-17801. |
23 | AN Heseong, PARK Sunghwan, KWON Hyuk Taek, et al. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes[J]. Journal of Membrane Science, 2017, 526: 367-376. |
24 | LIN R J, VILLACORTA HERNANDEZ B, GE L, et al. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312. |
25 | Jin Woo OH, CHO Kie Yong, KAN Mingyang, et al. High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation[J]. Journal of Membrane Science, 2020, 596: 117735. |
26 | MUELLER R, HARIHARAN V, ZHANG C, et al. Relationship between mixed and pure gas self-diffusion for ethane and ethene in ZIF-8/6FDA-DAM mixed-matrix membrane by pulsed field gradient NMR[J]. Journal of Membrane Science, 2016, 499: 12-19. |
27 | DONG Guangxi, LEE Young Moo. Microporous polymeric membranes inspired by adsorbent for gas separation[J]. Journal of Materials Chemistry A, 2017, 5(26): 13294-13319. |
28 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
29 | BURNS R L, KOROS W J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes[J]. Journal of Membrane Science, 2003, 211(2): 299-309. |
30 | STAUDT-BICKEL C, KOROS W J. Olefin/paraffin gas separations with 6FDA-based polyimide membranes[J]. Journal of Membrane Science, 2000, 170(2): 205-214. |
31 | SWAIDAN R J, MA X H, LITWILLER E, et al. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane[J]. Journal of Membrane Science, 2015, 495: 235-241. |
32 | KHAN M M, BENGTSON G, SHISHATSKIY S, et al. Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property[J]. European Polymer Journal, 2013, 49(12): 4157-4166. |
33 | SWAIDAN R J, GHANEM B, SWAIDAN R, et al. Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides[J]. Journal of Membrane Science, 2015, 492: 116-122. |
34 | TANAKA K, TAGUCHI A, HAO J Q, et al. Permeation and separation properties of polyimide membranes to olefins and paraffins[J]. Journal of Membrane Science, 1996, 121(2): 197-207. |
35 | TANAKA K, OSADA Y, KITA H, et al. Gas permeability and permselectivity of polyimides with large aromatic rings[J]. Journal of Polymer Science B: Polymer Physics, 1995, 33(13): 1907-1915. |
36 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
37 | BUDD P M, GHANEM B S, MAKHSEED S, et al. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials[J]. Chemical Communications, 2004(2): 230-231. |
38 | WANG Y, MA X, GHANEM B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
39 | YIN H J, YANG B, CHUA Y Z, et al. Effect of backbone rigidity on the glass transition of polymers of intrinsic microporosity probed by fast scanning calorimetry[J]. ACS Macro Letters, 2019, 8(8): 1022-1028. |
40 | CARTA M, CROAD M, MALPASS-EVANS R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers[J]. Advanced Materials, 2014, 26(21): 3526-3531. |
41 | CHEN Xiuling, WU Lei, YANG Huimin, et al. Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition[J]. Angewandte Chemie International Edition, 2021, 60(33): 17875-17880. |
42 | SWAIDAN R, GHANEM B, AL-SAEEDI M, et al. Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-gas CO2/CH4 separations[J]. Macromolecules, 2014, 47(21): 7453-7462. |
43 | LIAO Kuo Sung, LAI Juin Yih, CHUNG Tai Shung. Metal ion modified PIM-1 and its application for propylene/propane separation[J]. Journal of Membrane Science, 2016, 515: 36-44. |
44 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides[J]. Journal of Membrane Science, 2015, 475: 571-581. |
45 | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
46 | BACHMAN J E, SMITH Z P, LI T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nature Materials, 2016, 15(8): 845-849. |
47 | DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
48 | KOSINOV N, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79. |
49 | KIM Seong Joong, KWON YongSung, KIM DaeHun, et al. A review on polymer precursors of carbon molecular sieve membranes for olefin/paraffin separation[J]. Membranes, 2021, 11(7): 482. |
50 | MAHAJAN R, KOROS W J. Mixed matrix membrane materials with glassy polymers. Part 1[J]. Polymer Engineering & Science, 2002, 42(7): 1420-1431. |
51 | MAHAJAN Rajiv, KOROS William J. Mixed matrix membrane materials with glassy polymers. Part 2[J]. Polymer Engineering & Science, 2002, 42(7): 1432-1441. |
52 | LIU Gongping, CHERNIKOVA V, LIU Yang, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
53 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
PAN Yichang, XING Weihong. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
54 | BÖHME U, BARTH B, PAULA C, et al. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8[J]. Langmuir, 2013, 29(27): 8592-8600. |
55 | LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131(30): 10368-10369. |
56 | LEE Moon Joo, KWON Hyuk Taek, JEONG Hae Kwon. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange[J]. Angewandte Chemie International Edition, 2018, 57(1): 156-161. |
57 | ZHANG C, DAI Y, JOHNSON J R, et al. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations[J]. Journal of Membrane Science, 2012, 389: 34-42. |
58 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
59 | LIU Yang, CHEN Zhijie, LIU Gongping, et al. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation[J]. Advanced Materials, 2019, 31(14): e1807513. |
60 | CUI Xili, CHEN Kaijie, XING Huabin, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
61 | SHEN Qin, CONG Shenzhen, HE Rongrong, et al. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation[J]. Journal of Membrane Science, 2019, 588: 117201. |
62 | LEE Tae Hoon, JUNG Jae Gu, KIM Yu Jin, et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation[J]. Angewandte Chemie International Edition, 2021, 60(23): 13081-13088. |
63 | MA L, SVEC F, LYU Y Q, et al. Engineering of the filler/polymer interface in metal-organic framework-based mixed-matrix membranes to enhance gas separation[J]. Chemistry: An Asian Journal, 2019, 14(20): 3502-3514. |
64 | MA X H, SWAIDAN R J, WANG Y G, et al. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation[J]. ACS Applied Nano Materials, 2018, 1(7): 3541-3547. |
65 | WANG Ziyang, WANG Wenjian, ZENG Tao, et al. Covalent-linking-enabled superior compatibility of ZIF-8 hybrid membrane for efficient propylene separation[J]. Advanced Materials, 2022, 34(6): e2104606. |
66 | AN Heseong, CHO Kie Yong, BACK Seoin, et al. The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance[J]. Separation and Purification Technology, 2021, 261: 118279. |
67 | LIN Rijia, GE Lei, DIAO Hui, et al. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler[J]. Journal of Materials Chemistry A, 2016, 4(16): 6084-6090. |
68 | MOGHADAM F, LEE T H, PARK I, et al. Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity[J]. Journal of Membrane Science, 2020, 603: 118019. |
69 | JAPIP S, WANG H, XIAO Y C, et al. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation[J]. Journal of Membrane Science, 2014, 467: 162-174. |
70 | LIU Jiangtao, XIAO Youchang, CHUNG Tai Shung. Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation[J]. Journal of Materials Chemistry A, 2017, 5(9): 4583-4595. |
71 | PARK Sunghwan, JEONG Hae Kwon. In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation[J]. Journal of Membrane Science, 2020, 596: 117689. |
72 | AN Heseong, CHO Kie Yong, Qiang LYU, et al. Facile defect engineering of zeolitic imidazolate frameworks towards enhanced C3H6/C3H8 separation performance[J]. Advanced Functional Materials, 2021, 31(47): 2105577. |
73 | ASKARI M, CHUNG T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. Journal of Membrane Science, 2013, 444: 173-183. |
74 | GUO Xiangyu, XUE Wenjuan, SUN Yuxiu, et al. A confined flexibility release enabled non-equilibrium stage in mixed-matrix membranes: unprecedented selectivity for olefin/paraffin deep separation[J]. Journal of Materials Chemistry A, 2021, 9(46): 26045-26050. |
75 | LIU Donghui, XIANG Long, CHANG Hao, et al. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation[J]. Chemical Engineering Science, 2019, 204: 151-160. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[3] | 张金辉, 张焕, 朱新锋, 宋忠贤, 康海彦, 刘红盼, 邓炜, 侯广超, 李桂亭, 黄真真. UiO-66复合材料用于典型有机污染物吸附和光催化氧化的研究进展[J]. 化工进展, 2023, 42(1): 445-456. |
[4] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[5] | 朱晓, 朱军勇, 张亚涛. 金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J]. 化工进展, 2022, 41(8): 4314-4326. |
[6] | 张彦, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
[7] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[8] | 陈运涛, 董晓旭, 王洋, 王健男, 崔美, 黄仁亮. 巯基化Zr-MOFs/聚酯无纺布复合材料制备及应用[J]. 化工进展, 2022, 41(2): 854-861. |
[9] | 孟子豪, 李青云, 刘幽燕, 林东亮, 唐爱星. 单相体系中MOF固定化脂肪酶催化柠檬烯环氧化[J]. 化工进展, 2022, 41(12): 6540-6548. |
[10] | 张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展, 2022, 41(12): 6408-6418. |
[11] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
[12] | 赵国珂, 潘国元, 张杨, 于浩, 赵慕华, 唐功庆, 刘轶群. 石墨烯基材料在CO2分离膜领域的研究进展[J]. 化工进展, 2022, 41(11): 5896-5911. |
[13] | 李航, 杨鸿辉, 石博方, 延卫. MOFs及其衍生物在非均相Fenton催化中应用的研究进展[J]. 化工进展, 2022, 41(11): 5811-5819. |
[14] | 张逸, 刘东昊, 丁一刚. 膜技术分离稀土金属元素的研究进展[J]. 化工进展, 2022, 41(10): 5567-5577. |
[15] | 马蕾, 张飞飞, 宋志强, 杨江峰, 李立博, 李晋平. 金属有机骨架材料用于吸附分离CH4和N2的研究进展[J]. 化工进展, 2021, 40(9): 5107-5117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |