化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5107-5117.DOI: 10.16085/j.issn.1000-6613.2021-0673
马蕾1(), 张飞飞1, 宋志强1, 杨江峰1,2(), 李立博1,2, 李晋平1,2
收稿日期:
2021-03-31
修回日期:
2021-05-13
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
杨江峰
作者简介:
马蕾(1995—),男,硕士研究生,研究方向为甲烷脱氮。E-mail:基金资助:
MA Lei1(), ZHANG Feifei1, SONG Zhiqiang1, YANG Jiangfeng1,2(), LI Libo1,2, LI Jinping1,2
Received:
2021-03-31
Revised:
2021-05-13
Online:
2021-09-05
Published:
2021-09-13
Contact:
YANG Jiangfeng
摘要:
非常规天然气的利用不仅可以有效缓解常规天然气不足带来的能源问题,而且可以降低其肆意排放带来的温室效应,无论是低浓度煤层气的提浓还是低品质天然气的提质都需要解决甲烷与氮气的分离难题。基于金属有机骨架(MOFs)材料结构和功能均呈多样化的特色,本文主要从CH4选择型MOFs吸附材料和N2选择型MOFs吸附材料两个方面,综述了近年来MOFs材料在CH4与N2吸附分离方面的研究进展,讨论了影响二者分离的影响因素,并对吸附与分离机理与MOFs结构和性能关联进行了详细的总结与分析,提出了CH4与N2选择性提升的方法,即需要合适的孔道尺寸与弱极性表面性质或有利骨架结构的协同作用,最后展望了MOFs材料在甲烷富集和纯化领域的应用前景和发展趋势。
中图分类号:
马蕾, 张飞飞, 宋志强, 杨江峰, 李立博, 李晋平. 金属有机骨架材料用于吸附分离CH4和N2的研究进展[J]. 化工进展, 2021, 40(9): 5107-5117.
MA Lei, ZHANG Feifei, SONG Zhiqiang, YANG Jiangfeng, LI Libo, LI Jinping. Development of metal-organic frameworks in adsorptive separation of CH4-N2[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5107-5117.
1 | LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
2 | DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
3 | CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408. |
4 | 冯明, 陈力, 徐承科, 等. 中国煤层气资源与可持续发展战略[J]. 资源科学, 2007, 29(3): 100-104. |
FENG Ming, CHEN Li, XU Chengke, et al. Coal-bed methane resources and sustainable development in China[J]. Resources Science, 2007, 29(3): 100-104. | |
5 | FLORES R M. Coalbed methane: from hazard to resource[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4): 3-26. |
6 | YANG J F, WANG Y, LI L B, et al. Protection of open-metal V(Ⅲ) sites and their associated CO2/CH4/N2/O2/H2O adsorption properties in mesoporous V-MOFs[J]. Journal of Colloid and Interface Science, 2015, 456: 197-205. |
7 | 杨江峰. 基于低浓煤层气CH4/N2吸附分离微孔材料的合成及其性能研究[D]. 太原:太原理工大学,2012. |
YANG Jiangfeng. Rcscarch on the properties and synthesis of microporous materials based on the CH4/N2 adsorption separation in the low enriched coalbed methane[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
8 | WEN H M, LI B, LI L B, et al. A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities[J]. Advanced Materials, 2018, 30(16): 1704792. |
9 | JIANG J C, FURUKAWA H, ZHANG Y B, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138(32): 10244-10251. |
10 | PENG Y, KRUNGLEVICIUTE V, ERYAZICI I, et al. Methane storage in metal-organic frameworks: current records, surprise findings, and challenges[J]. Journal of the American Chemical Society, 2013, 135(32): 11887-11894. |
11 | YANG B, XU E L, LI M. Purification of coal mine methane on carbon molecular sieve by vacuum pressure swing adsorption[J]. Separation Science and Technology, 2016, 51(6): 909-916. |
12 | JAYARAMAN A, HERNANDEZ-MALDONADO A J, YANG R T, et al. Clinoptilolites for nitrogen/methane separation[J]. Chemical Engineering Science, 2004, 59(12): 2407-2417. |
13 | ÁGUEDA MATÉ V I, DELGADO DOBLADEZ J A, ÁLVAREZ-TORRELLAS S, et al. Modeling and simulation of the efficient separation of methane/nitrogen mixtures with [Ni3(HCOO)6] MOF by PSA[J]. Chemical Engineering Journal, 2019, 361: 1007-1018. |
14 | 杨江峰,赵强,于秋红,等.煤层气回收及CH4/N2分离PSA材料的研究进展[J]. 化工进展, 2011, 30(4): 793-801. |
YANG Jiangfeng, ZHAO Qiang, YU Qiuhong, et al. Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 793-801. | |
15 | 李立博. 基于甲烷氮气分离的柔性金属有机骨架(MOFs)性能及拓展研究[D]. 太原: 太原理工大学, 2015. |
LI Libo. Research on the properties and extensions of flexible metal-organic frameworks based on CH4/N2 separation[D]. Taiyuan: Taiyuan University of Technology, 2015. | |
16 | BHADRA S J, FAROOQ S. Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14030-14045. |
17 | ZHANG B Y, WU Q. Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate[J]. Energy & Fuels, 2010, 24(4): 2530-2535. |
18 | SIRCAR S. Publications on adsorption science and technology[J]. Adsorption, 2000, 6(4): 359-365. |
19 | YANG J F, LI J M, WANG W, et al. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and Beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864. |
20 | 刘佳奇, 尚华, 唐轩, 等. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(1): 449-456. |
LIU Jiaqi, SHANG Hua, TANG Xuan, et al. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 449-456. | |
21 | LIU X W, GUO Y, TAO A D, et al. “Explosive” synthesis of metal-formate frameworks for methane capture: an experimental and computational study[J]. Chemical Communications, 2017, 53(83): 11437-11440. |
22 | 贾晓霞,王丽,元宁,等. 二价铬/钼/镍空配位MOFs的CH4/N2吸附分离研究[J]. 化工学报, 2018, 69(9): 3896-3904, 4138. |
JIA Xiaoxia, WANG Li, YUAN Ning, et al. CH4 adsorption separation research of MOFs with divalent Cr/Mo/Ni unsaturated metal sites[J]. CIESC Journal, 2018, 69(9): 3896-3904, 4138. | |
23 | LI L B, YANG J F, LI J M, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246. |
24 | KIM T H, KIM S Y, YOON T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717. |
25 | KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418. |
26 | KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638. |
27 | KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125. |
28 | YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
29 | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
30 | MILLANGE F, SERRE C, FÉREY G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrⅢ hybrid inorganic-organic microporous solids: CrⅢ(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x[J]. Chemical Communications, 2002(8): 822-823. |
31 | PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc. Chem. Res., 2010, 43(1): 58-67. |
32 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
33 | KONDO M, OKUBO T, ASAMI A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [Cu2(pzdc)2(L)n] (pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand)[J]. Angewandte Chemie International Edition, 1999, 38(1/2): 140-143. |
34 | MARTÍ-RUJAS J, ISLAM N, HASHIZUME D, et al. Dramatic structural rearrangements in porous coordination networks[J]. Journal of the American Chemical Society, 2011, 133(15): 5853-5860. |
35 | LI J R, SCULLEY J, ZHOU H C, et al. Metal-organic frameworks for separations[J]. Chem. Rev., 2012, 112(2): 869-932. |
36 | LI L B, YANG J F, ZHAO Q, et al. One-dimensional interpenetrated coordination polymers showing step gas sorption properties[J]. CrystEngComm, 2013, 15(9): 1689. |
37 | MA H, REN H, ZOU X, et al. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures[J]. Polymer Chemistry, 2014, 5(1): 144-152. |
38 | HU J L, SUN T J, LIU X W, et al. Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution[J]. Microporous and Mesoporous Materials, 2016, 225: 456-464. |
39 | 张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2和CO2/CH4的分离[J]. 化工学报, 2015, 66(9): 3549-3555. |
ZHANG Zhuoming, YANG Jiangfeng, CHEN Yang, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9): 3549-3555. | |
40 | HU J L, SUN T J, LIU X W, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels[J]. RSC Advances, 2016, 6(68): 64039-64046. |
41 | WU X F, YUAN B, BAO Z B, et al. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework[J]. Journal of Colloid and Interface Science, 2014, 430: 78-84. |
42 | CHEN Y W, WU H X, YUAN Y N, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2020, 385: 123836. |
43 | HE Y, XIANG S, ZHANG Z, et al. A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas[J]. Chemical Communications, 2012, 48(88): 10856-10858. |
44 | MÖLLMER J, LANGE M, MÖLLER A, et al. Pure and mixed gas adsorption of CH4 and N2 on the metal-organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF[J]. Journal of Materials Chemistry, 2012, 22(20): 10274. |
45 | LI J M, YANG J F, LI L B, et al. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. Journal of Energy Chemistry, 2014, 23(4): 453-460. |
46 | SHI Q, WANG J, SHANG H, et al. Effective CH4 enrichment from N2 by SIM-1 via a strong adsorption potential SOD cage[J]. Separation and Purification Technology, 2020, 230: 115850. |
47 | NIU Z, CUI X L, PHAM T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
48 | CHANG M, ZHAO Y J, LIU D H, et al. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation[J]. Sustainable Energy & Fuels, 2020, 4(1): 138-142. |
49 | CHANG M, REN J H, YANG Q Y, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2021, 408: 127294. |
50 | KIVI C E, GELFAND B S, DURECKOVA H, et al. 3D porous metal-organic framework for selective adsorption of methane over dinitrogen under ambient pressure[J]. Chemical Communications, 2018, 54(100): 14104-14107. |
51 | CHANG M, ZHAO Y J, YANG Q Y, et al. Microporous metal-organic frameworks with hydrophilic and hydrophobic pores for efficient separation of CH4/N2 mixture[J]. ACS Omega, 2019, 4(11): 14511-14516. |
52 | KIM D, LEE H. Hydrophilic pore-blocked metal-organic frameworks: a simple route to a highly selective CH4/N2 separation[J]. RSC Advances, 2015, 5(4): 2749-2755. |
53 | MEEK S T, TEICH-MCGOLDRICK S L, PERRY J J, et al. Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19765-19772. |
54 | LI L Y, YANG L F, WANG J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689. |
55 | LIU B, SMIT B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8515-8522. |
56 | LYU D, WU Y, CHEN J Y, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane[J]. AIChE Journal, 2020, 66(9): e16287. |
57 | LI L B, YANG J F, LI J M, et al. Adsorption and molecular simulation of CO2 and CH4 in two-dimensional metal-organic frameworks with the same layered substrate[J]. CrystEngComm, 2013, 15(34): 6782-6789. |
58 | YANG J F, YU Q H, ZHAO Q, et al. Adsorption CO2, CH4 and N2 on two different spacing flexible layer MOFs[J]. Microporous and Mesoporous Materials, 2012, 161: 154-159. |
59 | LI L B, WANG Y, YANG J F, et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J]. Journal of Materials Chemistry A, 2015, 3(45): 22574-22583. |
60 | HE Y D, SHANG J, GU Q F, et al. Converting 3D rigid metal-organic frameworks (MOFs) to 2D flexible networks via ligand exchange for enhanced CO2/N2 and CH4/N2 separation[J]. Chemical Communications, 2015, 51(79): 14716-14719. |
61 | LIU X W, GU Y M, SUN T J, et al. Water resistant and flexible MOF materials for highly efficient separation of methane from nitrogen[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20392-20400. |
62 | RALLAPALLI P, PRASANTH K P, PATIL D, et al. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)][J]. Journal of Porous Materials, 2011, 18(2): 205-210. |
63 | LEE K, ISLEY W C, DZUBAK A L, et al. Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4[J]. Journal of the American Chemical Society, 2014, 136(2): 698-704. |
64 | JARAMILLO D E, REED D A, JIANG H Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
65 | YOON J W, CHANG H, LEE S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
66 | KUZNICKI S M, BELL V A, NAIR S, et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848): 720-724. |
[1] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[4] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[7] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[8] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[9] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[10] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[11] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[12] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[13] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[14] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[15] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |