1 |
LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie: International Edition, 2020, 59(7): 2578-2605.
|
2 |
OH P, LEE H, PARK S, et al. Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years[J]. Advanced Energy Materials, 2020, 10(24): 2000904.
|
3 |
ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Advanced Materials, 2020, 32(12): 1905629.
|
4 |
江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877.
|
|
JIANG Hao, LI Chunzhong. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances[J]. CIESC Journal, 2015, 66(8): 2872-2877.
|
5 |
YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 4126-4132.
|
6 |
YANG Z F, YU H F, HU Y J, et al. Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5V-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries[J]. Chemical Engineering Science, 2021, 231: 116297.
|
7 |
MIN K, JUNG C, KO D S, et al. High-performance and industrially feasible Ni-rich layered cathode materials by integrating coherent interphase[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20599-20610.
|
8 |
JIANG Q Q, YU H F, HU Y J, et al. Exposed surface engineering of high-voltage LiNi0.5Co0.2Mn0.3O2 cathode materials enables high-rate and durable Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23099-23105.
|
9 |
HU J T, XIAO Y G, TANG H T, et al. Tuning Li-ion diffusion in α-LiMn1–xFexPO4 nanocrystals by antisite defects and embedded β-phase for advanced Li-ion batteries[J]. Nano Letters, 2017, 17(8): 4934-4940.
|
10 |
GAO Xiang, HUANGB Rong, IKUHARA Yuichi, et al. Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4 [J]. Journal of Materials Chemistry A, 2019, 15: 8845-8854.
|
11 |
DONG Tiantian, ZHANG Huanrui, CUI Guanglei, et al. A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes [J]. Journal of Materials Chemistry A, 2019, 7: 24594-24601.
|
12 |
YU H F, ZHU H W, YANG Z F, et al. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes[J]. Chemical Engineering Journal, 2021, 412: 128625.
|
13 |
XIE Q, LI W D, MANTHIRAM A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chemistry of Materials, 2019, 31(3): 938-946.
|
14 |
SHI Y, ZHANG M H, FANG C C, et al. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery[J]. Journal of Power Sources, 2018, 394: 114-121.
|
15 |
ZHU H W, YU H F, JIANG H B, et al. High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries[J]. Chemical Engineering Science, 2020, 217: 115518.
|
16 |
朱华威, 余海峰, 江仟仟, 等. 硼高效掺杂LiNi0.5Co0.2Mn0.3O2正极材料及其性能提升机制[J]. 化工学报, 2021, 72(1): 609-618.
|
|
ZHU Huawei, YU Haifeng, JIANG Qianqian, et al. Synthesis and performance improvement mechanism of high-efficiency B doped LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. CIESC Journal, 2021, 72(1): 609-618.
|
17 |
YU H F, LI Y G, HU Y J, et al. 110th Anniversary: concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4108-4115.
|
18 |
艾灵, 毛丽萍, 李世友, 等. 三元正极材料LiNi0.6Co0.2Mn0.2O2制备及改性方法进展[J]. 化工新型材料, 2018, 46(5): 11-15.
|
|
AI Ling, MAO Liping, LI Shiyou, et al. Progress on the preparation and modification of LiNi0.6Co0.2Mn0.2O2 ternary anode material[J]. New Chemical Materials, 2018, 46(5): 11-15.
|
19 |
Do-wook JUN, KIM Un-hyuck, SUN Yang-kook, et al. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries [J]. Chemistry of Materials, 2017, 29(12): 5048-5052.
|
20 |
LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7574-7583.
|
21 |
LI J Y, CHANG C H, MANTHIRAM A. Toward long-life, ultrahigh-nickel layered oxide cathodes for lithium-ion batteries: optimizing the interphase chemistry with a dual-functional polymer[J]. Chemistry of Materials, 2020, 32(2): 759-768.
|
22 |
LU L, HU Y J, JIANG H, et al. Revealing the electrochemical mechanism of cationic/anionic redox on Li-rich layered oxides via controlling the distribution of primary particle size[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25796-25803.
|
23 |
YOU Y, CELIO H, LI J Y, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries[J]. Angewandte Chemie: International Edition, 2018, 57(22): 6480-6485.
|
24 |
徐晟. 锂离子电池富镍三元材料的合成放大化和改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
XU Sheng. Study of synthesis amplification and modification for Ni-rich ternary material in lithium ion battery[D]. Harbin: Harbin Institute of Technology, 2017.
|
25 |
阮泽文. LiNi1-x-yCoxAlyO2高镍三元正极材料的制备及改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
RUAN Zewen. Synthesis and modification of LiNi1-x-yCoxAlyO2 nickel rich cathode materials[D]. Harbin: Harbin Institute of Technology, 2016.
|
26 |
MYUNG S T, NOH H J, YOON S J, et al. Progress in high-capacity core-shell cathode materials for rechargeable lithium batteries[J]. The Journal of Physical Chemistry Letters, 2014, 5(4): 671-679.
|
27 |
卢鹏, 王自强, 封平净, 等. 一种进料口防堵的共沉淀反应釜: CN210252248U[P]. 2020-04-07.
|
|
LU Peng, WANG Ziqiang, FENG Pingjing, et al. Coprecipitation reaction kettle with anti-blocking feed port: CN210252248U[P]. 2020-04-07.
|
28 |
李新禄, 孟雨辰, 李斌, 等. 一种共沉淀产品的连续生产设备: CN211864966U[P]. 2020-11-06.
|
|
LI Xinlu, MENG Yuchen, LI Bin, et al. Continuous production equipment for coprecipitation product: CN211864966U[P]. 2020-11-06.
|
29 |
崔锋, 董金善, 曹宇. 颗粒尺寸对聚合釜内固-液两相流的影响[J]. 石油化工设备, 2019, 48(3): 18-23.
|
|
CUI Feng, DONG Jinshan, CAO Yu. Effect of particle diameter on solid-liquid two-phase flow inside polymerizer[J]. Petro-Chemical Equipment, 2019, 48(3): 18-23.
|
30 |
薛鹏, 訚硕, 任永志, 等. 一种连续式生产镍钴锰前驱体的系统: CN209169292U[P]. 2019-07-26.
|
|
XUE P, YIN S, REN Y Z, et al. A continuous production system of nickel-cobalt-manganese precursor: CN209169292U[P]. 2019-07-26.
|
31 |
汤依伟, 黄家奇, 王驹. 带可动折流板的前驱体共沉淀反应釜: CN208852880U[P]. 2019-05-14.
|
|
TANG Yiwei, HUANG Jiaqi, WANG Ju. Precursor coprecipitation reaction kettle with movable baffle plate: CN208852880U[P]. 2019-05-14.
|
32 |
CUI Y F, LIU K, MAN J Z, et al. Preparation of ultra-stable Li[Ni0.6Co0.2Mn0.2]O2 cathode material with a continuous hydroxide co-precipitation method[J]. Journal of Alloys and Compounds, 2019, 793: 77-85.
|
33 |
颜祥军, 罗利琼, 彭灿. 一种生产三元前驱体的共沉淀反应釜: CN211133893U[P]. 2020-07-31.
|
|
YAN Xiangjun, LUO Liqiong, PENG Can. Coprecipitation reaction kettle for producing ternary precursor: CN211133893U[P]. 2020-07-31.
|
34 |
张磊, 訚硕, 王一乔, 等. 镍钴锰酸锂正极材料及其制备方法及其前驱体的制备方法: CN110492098A[P]. 2019-11-22.
|
|
ZHANG Lei, YIN Shuo, WANG Yiqiao, et al. Nickel cobalt lithium manganate positive electrode material, preparation method thereof and preparation method of precursor thereof: CN110492098A[P]. 2019-11-22.
|
35 |
XU Z L, XIAO L L, WANG F, et al. Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1-x-yCoxMny)O2 cathode materials[J]. Journal of Power Sources, 2014, 248: 180-189.
|
36 |
成光耀. 一种共沉淀正极材料碳酸盐前驱体的清洁生产方法: CN201810020192.0[P]. 2020-06-30.
|
|
CHENG Guangyao. A clean production method for carbonate precursors of co-precipitation cathode materials: CN201810020192.0[P]. 2020-06-30.
|
37 |
NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society, 2012, 160(1): A105-A111.
|
38 |
BARAI P, FENG Z G, KONDO H, et al. Multiscale computational model for particle size evolution during coprecipitation of Li-ion battery cathode precursors[J]. The Journal of Physical Chemistry B, 2019, 123(15): 3291-3303.
|
39 |
DONG H X, KOENIG G M. Compositional control of precipitate precursors for lithium-ion battery active materials: role of solution equilibrium and precipitation rate[J]. Journal of Materials Chemistry A, 2017, 5(26): 13785-13798.
|
40 |
BOMMEL A VAN, DAHN J R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009, 21(8): 1500-1503.
|
41 |
SHEN Y B, WU Y Q, XUE H J, et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 717-726.
|
42 |
姜云鹏. LiNi08Co0.1Mn0.1O2富镍三元正极材料的制备及结构优化.[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
JIANG Yunpeng. Synthesis and structure optimization of LiNi08Co0.1Mn0.1O2 nickel rich cathode materials.[D]. Harbin: Harbin Institute of Technology, 2018.
|
43 |
LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2via co-precipitation[J]. Electrochimica Acta, 2004, 50(4): 939-948.
|
44 |
MAYRA Q P, KIM W S. Agglomeration of Ni-rich hydroxide in reaction crystallization: effect of Taylor vortex dimension and intensity[J]. Crystal Growth & Design, 2015, 15(4): 1726-1734.
|
45 |
刘宝生. 锂离子电池富镍正极材料LiNi08Co0.15Al0.05O2制备及改性研究.[D].哈尔滨: 哈尔滨工业大学, 2018.
|
|
LIU Baosheng. Study on preparation and modification of LiNi08Co0.15Al0.05O2 nickel rich cathode material for lithium-ion batteries.[D].Harbin: Harbin Institute of Technology, 2018.
|
46 |
LIANG L W, DU K, PENG Z D, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130: 82-89.
|
47 |
LIU L, YANG X G, YANG J, et al. Modelling of turbulent shear controllable co-precipitation synthesis of lithium ion battery cathode precursor micro-particles in a Taylor-Couette flow reactor with variable configurations of inner cylinder[J]. Chemical Engineering Journal, 2021, 411: 128571.
|
48 |
KIM Y, KIM D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 586-589.
|
49 |
乔胜超. 搅拌槽内流体流动及上浮颗粒悬浮混合的CFD数值模拟[D]. 天津: 天津大学, 2014.
|
|
QIAO Shengchao. Numerical simulation of fluid flow and suspension of floating solids in stirred tanks using CFD method[D]. Tianjin: Tianjin University, 2014.
|
50 |
FENG Z G, BARAI P, GIM J, et al. In situ monitoring of the growth of nickel, manganese, and cobalt hydroxide precursors during co-precipitation synthesis of Li-ion cathode materials[J]. Journal of the Electrochemical Society, 2018, 165(13): A3077-A3083.
|
51 |
KIM H, KIM Y. Investigation of growth kinetics of Ni0.855Co0.145(OH)2 particles in continuous co-precipitation process[J]. Ceramics International, 2020, 46(11): 19476-19483.
|