化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5118-5131.DOI: 10.16085/j.issn.1000-6613.2021-0398
收稿日期:
2021-03-01
修回日期:
2021-05-04
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
黄燕山,韩生
作者简介:
孔玥(1996—),女,硕士研究生,研究方向为能源材料的设计和可控合成。E-mail:基金资助:
KONG Yue(), HUANG Yanshan(), LUO Yu, HAN Sheng()
Received:
2021-03-01
Revised:
2021-05-04
Online:
2021-09-05
Published:
2021-09-13
Contact:
HUANG Yanshan,HAN Sheng
摘要:
石墨烯具有独特的二维结构、较大的理论比表面积、高载流子迁移率、高杨氏模量以及高热导率等特性,一直以来被视为新能源转换与存储领域的潜在应用材料。这些优势使其可以与一种或多种高活性的无机/有机材料通过共价键/非共价键进行复合,并通过协同效应来改善材料自身的缺陷,实现材料的性能最优化,进而拓展了其应用范围。因此,如何设计并合成具有一定功能作用的石墨烯基复合材料,构筑新型石墨烯结构,满足能源及其相关领域对于材料相关性质的要求,成为石墨烯材料领域的研究热点方向之一。本文综述了近年来石墨烯基复合材料的设计思路及该类材料在新能源转换与存储领域上的应用现状,并对其在各领域存在的关键问题进行了总结。最后,对石墨烯在各领域今后的研究和发展方向进行了展望。
中图分类号:
孔玥, 黄燕山, 罗宇, 韩生. 石墨烯基复合材料在新能源转换与存储领域的应用现状、关键问题及展望[J]. 化工进展, 2021, 40(9): 5118-5131.
KONG Yue, HUANG Yanshan, LUO Yu, HAN Sheng. Application status, key issues and prospects of graphene-based composite materials in the field of new energy conversion and storage industry[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5118-5131.
1 | ELISHAV Oren, MOSEVITZKYLIS Bar, MMILLER Elisa, et al. Progress and prospective of nitrogen-based alternative fuels[J]. Chemical Reviews, 2020, 120(12): 5352-5436. |
2 | SUN Zhuxing, FANG Siyuan, HU Yunhang. 3D graphene materials: from understanding to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): 10336-10453. |
3 | 暴睿, 尚玉栋, 贺江平, 等. 石墨烯复合材料研究进展及应用[J]. 针织工业, 2020(9): 18-22. |
BAO Rui, SHANG Yudong, HE Jiangping, et al. Research progress and applications of graphene composites[J]. Knitting Industries, 2020(9): 18-22. | |
4 | 崔峻豪, 葛岩峰, 李鹏伟, 等. 石墨烯基异质结光催化复合材料的研究进展[J]. 中国陶瓷, 2021, 57(1): 9-18. |
CUI Junhao, GE Yanfeng, LI Pengwei, et al. Research progress in graphene heterojunction composite photocatalyst[J]. China Ceramics, 2021, 57(1): 9-18. | |
5 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
6 | LUO Jiajun, YANG Liangwei, SUN Danping, et al. Graphene oxide “surfactant”-directed tunable concentration of graphene dispersion[J]. Small, 2020, 16(45): 2003426. |
7 | 王琳琳. 掺杂石墨烯吸附H2、CO的第一性原理研究[D]. 南京: 南京邮电大学, 2020. |
WANG Linlin. First-principles study on the adsorption of H2 and CO by doped graphene[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. | |
8 | HAN Yire, PARK Byeongju, Jiho EOM, et al. Direct growth of highly conductive large-area stretchable graphene[J]. Advanced Science, 2021, 8(7): 2003697. |
9 | TRAN Minhdao, LEE Sunggyu, JEON Sunam, et al. Decelerated hot carrier cooling in graphene via nondissipative carrier injection from MoS2[J]. ACS Nano, 2020, 14(10): 13905-13912. |
10 | ROBINSON Jeremyt, ZALALUTDINOV Maxim, BALDWIN Jeffreyw, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 2008, 8(10): 3441-3445. |
11 | 陈安国, 付紫微, 石斌, 等. 石墨烯掺杂对炭气凝胶电化学性能的影响[J]. 电源技术, 2021, 45(1): 34-38. |
CHEN Anguo, FU Ziwei, SHI Bin, et al. Effect of graphene doping on electrochemical performance of carbon aerogel[J]. Chinese Journal of Power Sources, 2021, 45(1): 34-38. | |
12 | 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究[J]. 物理学报, 2020, 69(19): 193102. |
CHEN Chao, DUAN Fangli. Effect of functional groups on crumpling behavior and structure of graphene oxide[J]. Acta Physica Sinica, 2020, 69(19): 193102. | |
13 | 赵颖. 常压非平衡等离子体制备石墨烯基复合材料及其电化学性能研究[D]. 合肥: 中国科学技术大学, 2020. |
ZHAO Ying. Preparation of graphene-based composites by non-equilibrium plasma at atmospheric pressure and their electrochemical properties[D]. Hefei: University of Science and Technology of China, 2020. | |
14 | LI Yuchao, BI Xueqing, WANG Shuangshuang, et al. Core-shell structured polyethylene glycol functionalized graphene for energy-storage polymer dielectrics: combined mechanical and dielectric performances[J]. Composites Science and Technology, 2020, 199: 108341. |
15 | 刘欢. 基于石墨烯功能化改性聚氨酯材料的制备与性能研究[D]. 常州: 江苏理工学院, 2020. |
LIU Huan. Research on the preparation and properties of functional modified polyurethane materials based on graphene[D]. Changzhou: Jiangsu Institute of Technology, 2020. | |
16 | YAO Yuanyuan, JIN Shaohua, MA Xianlong, et al. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy[J]. Composites Science and Technology, 2020, 200: 108457. |
17 | MANIKANDAN N A, PAKSHIRAJAN K, PUGAZHENTHI G. Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications[J]. International Journal of Biological Macromolecules, 2020, 154: 866-877. |
18 | ZHAO Zhicheng, YAN Song, LIAN Jun, et al. A new kind of nanohybrid poly(tetradecyl methyl-acrylate)-graphene oxide as pour point depressant to evaluate the cold flow properties and exhaust gas emissions of diesel fuels[J]. Fuel, 2018, 216: 818-825. |
19 | GUO Jianqiang, MAO Boyang, LI Jiongli, et al. Rethinking the reaction pathways of chemical reduction of graphene oxide[J]. Carbon, 2021, 171: 963-967. |
20 | LAN Qingchun, REN Chuanli, LAMBERT Alexander, et al. Platinum nanoparticle-decorated graphene oxide@polystyrene nanospheres for label-free electrochemical immunosensing of tumor markers[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4392-4399. |
21 | Chongcheen ONG, JOSE Rajan, SAHEED Mohamedshuaibmohamed. Phase transformed iron oxide-iron(oxy)hydroxide composite nanoflorets grown on foam-like graphene as a high performing adsorbent[J]. Chemical Engineering Journal, 2020, 388: 124306. |
22 | 王玲. 基于金属纳米粒子和氧化石墨烯的蛋壳膜光热性能研究[D]. 武汉: 武汉纺织大学, 2020. |
WANG Ling. Study on the photothermal properties of eggshell membrane based on metal nanoparticles and graphene oxide[D]. Wuhan: Wuhan Textile University, 2020. | |
23 | 康炜, 刘喜军, 王宇威, 等. 乳液聚合法制备PMMA/石墨烯纳米复合材料[J]. 中国塑料, 2019, 33(10): 11-16. |
KANG Wei, LIU Xijun, WANG Yuwei, et al. Preparation of PMMA/graphene nanocomposites by emulsion polymerization[J]. China Plastics, 2019, 33(10): 11-16. | |
24 | CHEN Yuanhai, LIU Fengru, QIU Feng, et al. Cobalt-doped porous carbon nanosheets derived from 2D hypercrosslinked polymer with CoN4 for high performance electrochemical capacitors[J]. Polymers, 2018, 10(12): 1339-1352. |
25 | LI Changxia, YANG Jin, PACHFULE Pradip, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity[J]. Nature Communications, 2020, 11: 4712. |
26 | 王继文, 薛丽梅, 梁尔淼, 等. 石墨烯/二氧化钛光催化复合薄膜的研究进展[J]. 炭素, 2020(3): 14-18. |
WANG Jiwen, XUE Limei, LIANG Ermiao, et al. Research progress in graphene-TiO2 photocatalytic composite films[J]. Carbon, 2020(3): 14-18. | |
27 | WANG Jitong, YANG Xiaojuan, WANG Yongbang, et al. Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. Chemical Engineering Science, 2021, 231: 116271. |
28 | KOROTEEV V O, STOLYAROVA S G, KOTSUN A A, et al. Nanoscale coupling of MoS2 and graphene via rapid thermal decomposition of ammonium tetrathiomolybdate and graphite oxide for boosting capacity of Li-ion batteries[J]. Carbon, 2021, 173: 194-204. |
29 | GAO Li, WU Guisheng, MA Jian, et al. SnO2 quantum dots@graphene frameworks as a high-performance flexible anode electrode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12982-12989. |
30 | MA Jian, KONG Yue, LIU Shunchang, et al. Flexible phosphorus-doped graphene/metal-organic framework-derived porous Fe2O3 anode for lithium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(12): 11900-11906. |
31 | LAHCEN Abdellatifait, RAUF Sakandar, BEDUK Tutku, et al. Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review[J]. Biosensors and Bioelectronics, 2020, 168(15): 112565. |
32 | 刘刚, 欧宝立, 赵欣欣, 等. 多孔纳米SiO2/氧化石墨烯改性聚氨酯涂层材料的研究[J]. 陶瓷学报, 2020, 41(4): 531-536. |
LIU Gang, Baoli OU, ZHAO Xinxin, et al. Preparation of porous nano SiO2/graphene oxide modified polyurethane coating materials[J]. Journal of Ceramics, 2020, 41(4): 531-536. | |
33 | JIANG Jibo, ZHU Liying, CHEN Haotian, et al. Effect of nickel-doped FeS2 nanoparticles-reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Journal of Alloys and Compounds, 2019, 775: 1293-1300. |
34 | ZHAO Zhiduan, LIU Daoyin, MA Jiliang, et al. Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods[J]. Chemical Engineering Journal, 2020, 388: 124213. |
35 | XIAO Peitao, BU Fanxing, ZHAO Ranran, et al. Sub-5nm ultrasmall metal-organic framework nanocrystals for highly efficient electrochemical energy storage[J]. ACS Nano, 2018, 12(4): 3947-3953. |
36 | 李正, 杨庆生, 尚军军, 等. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能[J]. 力学学报, 2020, 52(6): 1700-1708. |
LI Zheng, YANG Qingsheng, SHANG Junjun, et al. Piezoresistive sensing mechanism and piezoresistive performance of in-plane random stacked graphene composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1700-1708. | |
37 | 鞠渤宇, 杨文澍, 武高辉. 纳米复合材料界面调控与强化机制研究进展[J]. 中国材料进展, 2020, 39(9): 642-652. |
JU Boyu, YANG Wenshu, WU Gaohui. Research process on interface modification and strengthening mechanism of nanocomposites[J]. Materials China, 2020, 39(9): 642-652. | |
38 | OLIVA Jorge, Christian GOMEZ-SOLIS, Luisarmando DIAZ-TORRESET, et al. Photocatalytic hydrogen evolution by flexible graphene composites decorated with Ni(OH)2 nanoparticles[J]. The Journal of Physical Chemistry C, 2018, 122(3): 1477-1485. |
39 | XIAO Dezhi, RUAN Qingdong, BAO Deliang, et al. Effects of ion energy and density on the plasma etching-induced surface area, edge electrical field, and multivacancies in MoSe2 nanosheets for enhancement of the hydrogen evolution reaction[J]. Small, 2020, 16(25): 2001470. |
40 | YU Jie, GUO Yanan, MIAO Shuanshuan, et al. Spherical ruthenium disulfide-sulfur-doped graphene composite as an efficient hydrogen evolution electrocatalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34098-34107. |
41 | MAO Hui, GUO Xi, FAN Qinzhen, et al. Improved hydrogen evolution activity by unique NiS2-MoS2 heterostructures with misfit lattices supported on poly(ionic liquid)s functionalized polypyrrole/graphene oxide nanosheets[J]. Chemical Engineering Journal, 2021, 404: 126253. |
42 | YANG Yang, WANG Yutong, HE Hailong, et al. Covalently connected Nb4N5-xOx-MoS2 heterocatalysts with desired electron density to boost hydrogen evolution[J]. ACS Nano, 2020, 14(4): 4925-4937. |
43 | YUE Xin, HUANG Shangli, CAI Junjie, et al. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7784-7790. |
44 | WANG Nan, LI Ligui, ZHAO Dengke, et al. Graphene composites with cobalt sulfide: efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte[J]. Small, 2017, 13(33): 1701025. |
45 | XIAO Zhaohui, HUANG Yucheng, DONG Chungli, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2020, 142(28): 12087-12095. |
46 | SUN Yu, WANG Qiao, GENG Zhibin, et al. Fabrication of two-dimensional 3d transition metal oxides through template assisted cations hydrolysis method[J]. Chemical Engineering Journal, 2021, 415: 129044. |
47 | ZHANG Rongxian, CHENG Shiqing, LI Na, et al. N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity[J]. Applied Surface Science, 2020, 503: 144146. |
48 | 张剑光. 氢能产业发展展望——氢燃料电池系统与氢燃料电池汽车和发电[J]. 化工设计, 2020, 30(1): 3-6, 12. |
ZHANG Jianguang. Hydrogen energy industry development prospects—hydrogen fuel cell systems and hydrogen fuel cell vehicles & power generation[J]. Chemical Engineering Design, 2020, 30(1): 3-6, 12. | |
49 | CAI Jiajun, ZHOU QingYan, LIU Bing, et al. A sponge-templated sandwich-like cobalt-embedded nitrogen-doped carbon polyhedron/graphene composite as a highly efficient catalyst for Zn-air batteries[J]. Nanoscale, 2020, 12(2): 973-982. |
50 | BEZERRA Leticias, MAIA Gilberto. Developing efficient catalysts for the OER and ORR using a combination of Co, Ni, and Pt oxides along with graphene nanoribbons and NiCo2O4[J]. Journal of Materials Chemistry A, 2020, 8(34): 17691-17705. |
51 | MAITI Kakali, KIM Namhoon, LEE Joonghee, et al. Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst[J]. Chemical Engineering Journal, 2021, 410: 128358. |
52 | RIVERA Luismiguel, GARCIA Gonzalo, PASTOR Elena. Novel graphene materials for the oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2018, 9: 233-239. |
53 | ZHANG Yating, WANG Peng, YANG Juan, et al. Fabrication of core-shell nanohybrid derived from iron-based metal-organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction[J]. Chemical Engineering Journal, 2020, 401: 126001. |
54 | HAN Lei, SUN Yanyan, LI Shuang, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis, 2019, 9(2): 1283-1288. |
55 | WAN Lili, ZANG Guolong, WANG Xin, et al. Tiny crystalline grain nanocrystal NiCo2O4/N-doped graphene composite for efficient oxygen reduction reaction[J]. Journal of Power Sources, 2017, 345: 41-49. |
56 | 张彦. 负载型石墨烯光催化剂的制备及性能研究[J]. 化学工程与装备, 2021(2): 15-17. |
ZHANG Yan. Preparation and performance study of supported graphene photocatalyst[J]. Chemical Engineering and Equipment, 2021(2): 15-17. | |
57 | 盛浩, 刘琳, 徐键, 等. 掺杂石墨烯的ZnO复合材料研究进展[J]. 硅酸盐通报, 2021, 40(3): 999-1006. |
SHENG Hao, LIU Lin, XU Jian, et al. Research and development on graphene doped ZnO composites[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 999-1006. | |
58 | KUANG Panyong, SAYED Mahmoud, FAN Jiajie, et al. 3D Graphene-based H2-production photocatalyst and electrocatalyst[J]. Advanced Energy Materials, 2020, 10(14): 1903802. |
59 | TOBALDI D M, DVORANOVÁ D, LAJAUNIE, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment[J]. Chemical Engineering Journal, 2021, 405: 126651-126665. |
60 | QIAO Disi, LI Zehao, DUAN Jinyou, et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants[J]. Chemical Engineering Journal, 2020, 400: 125952. |
61 | CHEN Daming, YAN Song, CHEN Haijun, et al. Hierarchical Ni-Mn layered double hydroxide grown on nitrogen-doped carbon foams as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2018, 292: 374-382. |
62 | TIAN Jie, WU Sai, YIN Xianglu, et al. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode[J]. Applied Surface Science, 2019, 496: 143696. |
63 | LIU Ting, ZHANG Xuesha, LIU Kang, et al. A novel and facile synthesis approach of porous carbon/graphene composite for the supercapacitor with high performance[J]. Nanotechnology, 2018, 29(9): 115962-115989. |
64 | WANG Guiqiang, HOU Shuo, YAN Chao, et al. Preparation of three-dimensional vanadium nitride porous nanoribbon/graphene composite as an efficient electrode material for supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(15): 13118-13124. |
65 | CHEN Haijun, MA Xudong, SHEN Peikang. NiCo2S4 nanocores in situ encapsulated in graphene sheets as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 364: 167-176. |
66 | LIU Jiaqi, ZHENG Mingbo, SHI Xiaoqin, et al. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors[J]. Advanced Functional Materials, 2016, 26(6): 919-930. |
67 | SUN Shumin, LI Shaodan, WANG Shen, et al. Fabrication of hollow NiCo2O4 nanoparticle/graphene composite for supercapacitor electrode[J]. Materials Letters, 2016, 182: 23-26. |
68 | WANG Yang, LI Xiaolong, CHEN Lei, et al. Ultrahigh-capacity tetrahydroxybenzoquinone grafted graphene material as a novel anode for lithium-ion batteries[J]. Carbon, 2019, 155: 445-452. |
69 | ZHAO Qian, ZHU Qizhen, MIAO Jiawei, et al. Flexible 3D porous MXene foam for high-performance lithium-ion batteries[J]. Small, 2019, 15(51): 1904293. |
70 | 常西苑. 石墨烯基复合材料的制备及其热性能的研究[D]. 北京: 北京化工大学, 2020. |
CHANG Xiyuan. Preparation of graphene-based composite materials and research on thermal properties[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
71 | 宋慧敏, 李雅菲, 韩继源, 等. 石墨烯/导电聚合物复合材料研究进展[J]. 胶体与聚合物, 2020, 38(4): 195-199, 204. |
SONG Huimin, LI Yafei, HAN Jiyuan, et al. Research progress of graphene/conductive polymer composites[J]. Chinese Journal of Colloid & Polymer, 2020, 38(4): 195-199, 204. | |
72 | LIN Yan, TIAN Yanqin, SUN Hefei, et al. Progress in modifications of 3D graphene-based adsorbents for environmental applications[J]. Chemosphere, 2021, 270: 129420. |
73 | TSANG Chihimalpha, HUANG Haibao, XUAN Jin, et al. Graphene materials in green energy applications: recent development and future perspective[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109656. |
74 | 肖东, 孟祥桐, 马洋军, 等. 染料敏化太阳能电池碳基对电极的研究进展[J]. 化学工业与工程, 2021, 38(1): 1-26. |
XIAO Dong, MENG Xiangtong, MA Yangjun, et al. Carbon-based counter electrodes for dye-sensitized solar cells: state-of-art progress, challenges and perspectives[J]. Chemical Industry and Engineering, 2021, 38(1): 1-26. | |
75 | WU Mingxing, SUN Mengyao, ZHOU Huawei, et al. Carbon counter electrodes in dye-sensitized and perovskite solar cells[J]. Advanced Functional Materials, 2020, 30(7): 1906451. |
76 | CUI Xiaoju, XIAO Jianping, WU Yihui, et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2016, 55(23): 6708-6712. |
77 | Donghwan KOO, JUNG Sungwoo, SEO Jihyung, et al. Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes[J]. Joule, 2020, 4: 1021-1034. |
78 | 靳爱民. 钠离子电池是锂离子电池的有效替代品[J]. 石油炼制与化工, 2021, 52(1): 19. |
JIN Aimin. Sodium ion battery is an effective substitute for lithium ion battery[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 19. | |
79 | THAKUR Amrit Kumar, AHMED Mohammad Shamsuddin, Gwangeon OH, et al. Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(5): 2628-2661. |
80 | CUI Zhe, HE Shuang, LIU Qian, et al. Graphene-like carbon film wrapped tin (Ⅱ) sulfide nanosheet arrays on porous carbon fibers with enhanced electrochemical kinetics as high-performance Li and Na ion battery anodes[J]. Advanced Science, 2020, 7(18): 1903045. |
81 | CHEN Biao, WANG Tianshuai, ZHAO Shiyong, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts[J]. Advanced Materials, 2021, 33(12): 2007090. |
82 | QIAO Yun, WU Jiawei, CHENG Xiaoguang, et al. Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries[J]. Journal of Energy Chemistry, 2020, 48: 435-442. |
83 | SU Yanning, ZHENG Xuelin, CHENG Hongyang, et al. Mn-Fe3O4 nanoparticles anchored on the urushiol functionalized 3D-graphene for the electrochemical detection of 4-nitrophenol[J]. Journal of Hazardous Materials, 2021, 409: 124926. |
84 | PARK Sanghwan, KIM Yuntae, MIN Hyegi, et al. Alkalide-assisted direct electron injection for the noninvasive n-type doping of graphene[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1270-1276. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |