化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5132-5144.DOI: 10.16085/j.issn.1000-6613.2021-0887
收稿日期:
2021-03-01
修回日期:
2021-04-28
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
郝广平
作者简介:
葛睿(1997—),女,硕士研究生,研究方向为电催化二氧化碳还原。E-mail:基金资助:
GE Rui(), HU Xu, DONG Lingyu, LI Dan, HAO Guangping()
Received:
2021-03-01
Revised:
2021-04-28
Online:
2021-09-05
Published:
2021-09-13
Contact:
HAO Guangping
摘要:
电催化二氧化碳还原(CO2RR)利用电场作用在温和的条件下将二氧化碳转化为高值化学品。将CO2RR与热力学电势较低的阳极反应耦合,可以降低槽电压,在阳极和阴极同时生成高值化学品,提高能量效率。本文介绍了CO2RR与氧化合成反应耦合策略,探究了电解池、离子交换膜等电解装置对CO2RR耦合电催化性能的影响,归纳了常用于CO2RR耦合氧化合成体系中阴阳极电催化剂的种类,重点综述了CO2RR与氯碱过程、醇类和含氮有机物氧化等典型阳极氧化合成反应耦合的最新进展。最后,针对目前存在的阳极催化剂成本高、全电解阳极产物的分离检测困难、反应物转化率低等问题,提出开发更加高效、稳定和低成本的阳极电催化剂、升级电极结构和电解装置以及拓展新型CO2RR耦合体系等是未来的研究方向。
中图分类号:
葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144.
GE Rui, HU Xu, DONG Lingyu, LI Dan, HAO Guangping. Electrochemical coupling between cathodic carbon dioxide reduction and anodic oxidation synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5132-5144.
1 | BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
2 | YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147. |
3 | NAM D H, DE LUNA P, ROSAS-HERNÁNDEZ A, et al. Molecular enhancement of heterogeneous CO2 reduction[J]. Nature Materials, 2020, 19(3): 266-276. |
4 | ZHENG Y, VASILEFF A, ZHOU X L, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659. |
5 | TODOROVA T K, SCHREIBER M W, FONTECAVE M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts[J]. ACS Catalysis, 2020, 10(3): 1754-1768. |
6 | SUN L B, REDDU V, FISHER A C, et al. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts[J]. Energy & Environmental Science, 2020, 13(2): 374-403. |
7 | HUANG J F, BUONSANTI R. Colloidal nanocrystals as heterogeneous catalysts for electrochemical CO2 conversions[J]. Chemistry of Materials, 2019, 31(1): 13-25. |
8 | DE ARQUER F P G, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2[J]. Science, 2020, 367(6478): 661-666. |
9 | JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165-2177. |
10 | ENDRODI B, KECSENOVITY E, SAMU A, et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency[J]. ACS Energy Letters, 2019, 4(7): 1770-1777. |
11 | REN S X, JOULIE D, SALVATORE D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365(6451): 367-369. |
12 | LI T F, KASAHARA T, HE J F, et al. Photoelectrochemical oxidation of organic substrates in organic media[J]. Nature Communications, 2017, 8(1): 390. |
13 | CHEN Y X, LAVACCHI A, MILLER H A, et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nature Communications, 2014, 5: 4036. |
14 | CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
15 | GARG S, LI M R, WEBER A Z, et al. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials[J]. Journal of Materials Chemistry A, 2020, 8(4): 1511-1544. |
16 | LLORENTE M J, NGUYEN B H, KUBIAK C P, et al. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates[J]. Journal of the American Chemical Society, 2016, 138(46): 15110-15113. |
17 | SABATINO S, GALIA A, SARACCO G, et al. Development of an electrochemical process for the simultaneous treatment of wastewater and the conversion of carbon dioxide to higher value products[J]. ChemElectroChem, 2017, 4(1): 150-159. |
18 | &#x VASS100193;, ENDRÖDI B, JNAKY C. Coupling electrochemical carbon dioxide conversion with value-added anode processes: an emerging paradigm[J]. Current Opinion in Electrochemistry, 2021, 25: 100621. |
19 | GUO J H, SUN W Y. Integrating nickel-nitrogen doped carbon catalyzed CO2 electroreduction with chlor-alkali process for CO, Cl2 and KHCO3 production with enhanced techno-economics[J]. Applied Catalysis B: Environmental, 2020, 275: 119154. |
20 | PÉREZ-GALLENT E, TURK S, LATSUZBAIA R, et al. Electroreduction of CO2 to CO paired with 1,2-propanediol oxidation to lactic acid. Toward an economically feasible system[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6195-6202. |
21 | XU Y, EDWARDS J P, LIU S J, et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability[J]. ACS Energy Letters, 2021, 6(2): 809-815. |
22 | BEVILACQUA M, FILIPPI J, LAVACCHI A, et al. Energy savings in the conversion of CO2 to fuels using an electrolytic device[J]. Energy Technology, 2014, 2(6): 522-525. |
23 | GUTIÉRREZ-GUERRA N, MORENO-LÓPEZ L, SERRANO-RUIZ J C, et al. Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes[J]. Applied Catalysis B: Environmental, 2016, 188: 272-282. |
24 | WU J J, RISALVATO F G, SHARMA P P, et al. Electrochemical reduction of carbon dioxide: II. Design, assembly, and performance of low temperature full electrochemical cells[J]. Journal of the Electrochemical Society, 2013, 160(9): F953-F957. |
25 | KUZT R B, CHEN Q M, YANG H Z, et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5(6): 929-936. |
26 | LIU Z C, MASEL R I, CHEN Q M, et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016, 15: 50-56. |
27 | LI Y C, ZHOU D K, YAN Z F, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1(6): 1149-1153. |
28 | OENER S Z, ARDO S, BOETTCHER S W. Ionic processes in water electrolysis: the role of ion-selective membranes[J]. ACS Energy Letters, 2017, 2(11): 2625-2634. |
29 | DELACOURT C, NEWMAN J. Mathematical modeling of CO2 reduction to CO in aqueous electrolytes II. Study of an electrolysis cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2010, 157(12): B1911-B1926. |
30 | SMITHA B, SRIDHAR S, KHAN A A. Solid polymer electrolyte membranes for fuel cell applications—A review[J]. Journal of Membrane Science, 2005, 259(1/2): 10-26. |
31 | BARBOSA N M, GEISE G M, HICKNER M A, et al. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells[J]. ChemSusChem, 2015, 7(11): 3017-3020. |
32 | MCDONALD M B, ARDO S, LEWIS N S, et al. Use of bipolar membranes for maintaining steady state pH gradients in membrane-supported, solar-driven water splitting[J]. ChemSusChem, 2014, 7(11): 3021-3027. |
33 | YANG H Z, KACZUR J J, SAJJAD S D, et al. Electrochemical conversion of CO2 to formic acid utilizing sustainionTM membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217. |
34 | 苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394. |
SU W L, FAN Y. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394. | |
35 | 刘金杭. 几种二维单原子催化剂电催化还原CO2的第一性原理研究[D]. 武汉: 华中科技大学, 2019. |
LIU J H. First-principles study on the electrocatalytic reduction of CO2 by two-dimensional single-atom catalyst[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
36 | GAO D F, ZHANG Y, ZHOU Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655. |
37 | LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
38 | KORNIENKO N, ZHAO Y B, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135. |
39 | COSTENTIN C, DROUET S, ROBERT M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst[J]. Science, 2012, 338(6103): 90-94. |
40 | PAN F P, ZHAO H L, DENG W, et al. A novel N, Fe-decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction[J]. Electrochimica Acta, 2018, 273: 154-161. |
41 | 董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509. |
DONG L Y, GE R, YUAN Y F, et al. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials[J]. CIESC Journal, 2020, 71(6): 2492-2509. | |
42 | SHARMA P P, WU J J, YADAV R M, et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity[J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705. |
43 | DUAN X C, XU J T, WEI Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017, 29(41): 1701784. |
44 | WU J J, MA L L, YADAV R M, et al. Nitrogen doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14763-14769. |
45 | WU J J, YADAV R M, LIU M J, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5364-5371. |
46 | JHONG H R M, TORNOW C E, SMID B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. ChemSusChem, 2017, 10(6): 1094-1099. |
47 | SREEKANTH N, NAZRULLA M A, VINEESH T V, et al. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate[J]. Chemical Communications, 2015, 51(89): 16061-16064. |
48 | TANG S B, ZHOU X H, ZHANG S Y, et al. Metal-free boron nitride nanoribbon catalysts for electrochemical CO2 reduction: combining high activity and selectivity[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 906-915. |
49 | LI W L, SEREDYCH M, RODRÍGUEZ-CASTELLÓN E, et al. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4[J]. ChemSusChem, 2016, 9(6): 606-616. |
50 | LI R R, LIU F, ZHANG Y H, et al. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44578-44587. |
51 | PAN F P, LI B Y, XIANG X M, et al. Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering[J]. ACS Catalysis, 2019, 9(3): 2124-2133. |
52 | WUTTIG A, SURENDRANATH Y. Impurity ion complexation enhances carbon dioxide reduction catalysis[J]. ACS Catalysis, 2015, 5(7): 4479-4484. |
53 | LUM Y W, KWON Y K, LOBACCARO P, et al. Trace levels of copper in carbon materials show significant electrochemical CO2 reduction activity[J]. ACS Catalysis, 2016, 6(1): 202-209. |
54 | WU J J, LIU M J, SHARMA P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters, 2016, 16(1): 466-470. |
55 | LU X Y, TAN T H, NG Y H, et al. Highly selective and stable reduction of CO2 to CO by a graphitic carbon nitride/carbon nanotube composite electrocatalyst[J]. Chemistry a European Journal, 2016, 22(34): 11991-11996. |
56 | WANG H X, CHEN Y B, HOU X L, et al. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution[J]. Green Chemistry, 2016, 18(11): 3250-3256. |
57 | LIU Y M, CHEN S, QUAN X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond[J]. Journal of the American Chemical Society, 2015, 137(36): 11631-11636. |
58 | SONG Y F, CHEN W, ZHAO C C, et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10840-10844. |
59 | XU J Y, KAN Y H, HUANG R, et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide[J]. ChemSusChem, 2016, 9(10): 1085-1089. |
60 | SUN X F, KANG X C, ZHU Q G, et al. Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes[J]. Chemical Science, 2016, 7(4): 2883-2887. |
61 | CUI X Q, PAN Z Y, ZHANG L J, et al. Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction[J]. Advanced Energy Materials, 2017, 7(22): 1701456. |
62 | NATSUI K, IWAKAWA H, IKEMIYA N, et al. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes[J]. Angewandte Chemie International Edition, 2018, 57(10): 2639-2643. |
63 | JU W, BAGGER A, HAO G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8: 944. |
64 | LI X G, BI W T, CHEN M L, et al. Exclusive Ni-N4 site realize near unity CO selectivity for electrochemical CO2 reduction [J]. Journal of the American Chemical Society, 2017, 139(42): 14889-14892. |
65 | CHENG Y, ZHAO S Y, JOHANNESSEN B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials, 2018, 30(13): 1706287. |
66 | LU P L, YANG Y J, YAO J N, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J]. Applied Catalysis B:Environmental, 2019, 241(241): 113-119. |
67 | ZHENG T T, JIANG K, TA N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single atom catalyst[J]. Joule, 2019, 3(1): 265-278. |
68 | MOLLER T, JU W, BAGGER A, et al. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities[J]. Energy & Environmental Science, 2019, 12(2): 640-647. |
69 | VARELA A S, RANJBAR SAHRAIE N, STEINBERG J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015, 54(37): 10758-10762. |
70 | HU C, BAI S L, Gao L J, et al. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts[J]. 2019, 9(12): 11579-11588. |
71 | PAN F P, ZHANG H G, LIU K X, et al. Unveiling active sites of CO2 reduction on nitrogen coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4): 3116-3122. |
72 | ZHU W J, ZHANG L, LIU S H, et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect[J]. Angewandte Chemie International Edition, 2020, 59(31): 12664-12668. |
73 | YANG F, SONG P, LIU X Z, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst[J]. Angewandte Chemie International Edition, 2018, 57(38): 12303-12307. |
74 | DENG W N, MIN S X, WANG F, et al. Efficient CO2 electroreduction to CO at low overpotentials using a surface-reconstructed and N-coordinated Zn electrocatalyst[J]. Dalton Transactions, 2020, 49(17): 5434-5439. |
75 | DAIYAN R, SAPUTERA W H, MASOOD H, et al. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value‐added chemicals and fuel[J]. Advanced Energy Materials, 2020, 10(11): 1902106. |
76 | WU J J, MA S C, SUN J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi carbon hydrocarbons and oxygenates[J]. Nature Communications, 2016, 7: 13869. |
77 | DAIYAN R, TAN X, CHEN R, et al. Electroreduction of CO2 to CO on a mesoporous carbon catalyst with progressively removed nitrogen moieties[J]. ACS Energy Letters, 2018, 3(9): 2292-2298. |
78 | KOU W, ZHANG Y X, DONG J, et al. Nickel-nitrogen-doped three-dimensional ordered macro/mesoporous carbon as an efficient electrocatalyst for CO2 reduction to CO[J]. ACS Applied Energy Materials, 2020, 3(2): 1875-1882. |
79 | HE Y H, JIANG W J, ZHANG Y, et al. Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts[J]. Journal of Materials Chemistry A, 2019, 7(31): 18428-18433. |
80 | VARELA A S, JU W, BAGGER A, et al. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts[J]. ACS Catalysis, 2019, 9(8): 7270-7284. |
81 | TRIPKOVIC V, VANIN M, KARAMAD M, et al. Electrochemical CO2 and CO reduction on metal functionalized porphyrin-like graphene[J]. The Journal of Physical Chemistry C, 2013, 117(18): 9187-9195. |
82 | WEN C F, MAO F X, LIU Y W, et al. Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis[J]. ACS Catalysis, 2020, 10(2): 1086-1093. |
83 | YANG H P, LIN Q, ZHANG C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities[J]. Nature Communications, 2020, 11: 593. |
84 | YAN C C, LI H B, YE Y F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210. |
85 | GUAN A X, CHEN Z, QUAN Y L, et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites[J]. ACS Energy Letters, 2020, 5(4): 1044-1053. |
86 | WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642. |
87 | LISTER T E, DUFEK E J. Chlor-syngas: coupling of electrochemical technologies for production of commodity chemicals[J]. Energy & Fuels, 2013, 27(8): 4244-4249. |
88 | QUAN F J, ZHAN G M, SHANG H, et al. Highly efficient electrochemical conversion of CO2 and NaCl to CO and NaClO[J]. Green Chemistry, 2019, 21(12): 3256-3262. |
89 | LI T F, CAO Y, HE J F, et al. Electrolytic CO2 reduction in tandem with oxidative organic chemistry[J]. ACS Central Science, 2017, 3(7): 778-783. |
90 | WANG Y, GONELL S, MATHIYAZHAGAN U R, et al. Simultaneous electrosynthesis of syngas and an aldehyde from CO2 and an alcohol by molecular electrocatalysis[J]. ACS Applied Energy Materials, 2019, 2(1): 97-101. |
91 | ZOU J P, CHEN Y, LIU S S, et al. Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode[J]. Water Research, 2019, 150: 330-339. |
92 | ZHU M, ZHANG L S, LIU S S, et al. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chinese Chemical Letters, 2020, 31(7): 1961-1965. |
93 | MEDVEDEVA X V, MEDVEDEV J J, TATARCHUK S W, et al. Sustainable at both ends: electrochemical CO2 utilization paired with electrochemical treatment of nitrogenous waste[J]. Green Chemistry, 2020, 22(14): 4456-4462. |
94 | LEOW W R, LUM Y, OZDEN A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368(6496): 1228-1233. |
95 | WEI X F, LI Y, CHEN L S, et al. Formic acid electro synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation[J]. Angewandte Chemie International Edition, 2021, 60(6): 3148-3155. |
96 | VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nature Energy, 2019, 4(6): 466-474. |
97 | HOUACHE M S E, SAFARI R, NWABARA U O, et al. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1-xMx (M = Bi, Pd, and Au) nanocatalysts and coelectrolysis of CO2[J]. ACS Applied Energy Materials, 2020, 3(9): 8725-8738. |
98 | HAAS T, KRAUSE R, WEBER R, et al. Technical photosynthesis involving CO2 electrolysis and fermentation[J]. Nature Catalysis, 2018, 1(1): 32-39. |
99 | CHEN C, ZHU X R, WEN X J, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry, 2020, 12(8): 717-724. |
[1] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[2] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[3] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[4] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
[5] | 王鲁元, 金春江, 陈惠敏, 程星星, 安东海, 张兴宇, 孙荣峰, 耿文广. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592. |
[6] | 杨妍, 刘国涛, 余庆慧, 李晓娟, 张颖. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(S2): 198-202. |
[7] | 曾茂株, 佘煜琪, 胡玉彬, 吴林军, 袁慢景, 漆毅, 王欢, 林绪亮, 秦延林. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
[8] | 郑超, 康凯, 周术元, 宋华, 白书培. 水分子在多孔炭材料上的吸附行为研究进展[J]. 化工进展, 2021, 40(7): 3803-3812. |
[9] | 王特, 蒋立, 田晓录, 方彬任, 屈龙, 李明涛. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. |
[10] | 侯璐, 胡友仁, 李文翠, 董晓玲, 陆安慧. 富氧多孔炭的合成及其在电化学储能中的作用[J]. 化工进展, 2021, 40(6): 3020-3033. |
[11] | 杨宇轩, 朱晨曦, 黄群星. 废弃物衍生分级多孔炭的制备及吸附应用进展[J]. 化工进展, 2021, 40(1): 427-439. |
[12] | 王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展, 2020, 39(S2): 185-195. |
[13] | 张向倩, 何斌, 董晓玲, 叶成玉, 陆安慧. 多孔炭材料设计合成及电化学储能应用[J]. 化工进展, 2019, 38(01): 404-420. |
[14] | 崔维怡, 惠继星, 谭乃迪. 非贵金属催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2018, 37(11): 4286-4293. |
[15] | 王博, 高冠道, 李凤祥, 周启星, 宋晓静, 翟欢欢, 李亚宁. 微生物电解池应用研究进展[J]. 化工进展, 2017, 36(03): 1084-1092. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 760
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |