化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6408-6418.DOI: 10.16085/j.issn.1000-6613.2022-0402
收稿日期:
2022-03-16
修回日期:
2022-05-05
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
赵祯霞
作者简介:
张新宇(1998—),男,硕士研究生,研究方向为吸附分离。E-mail:2290652654@qq.com。
基金资助:
Received:
2022-03-16
Revised:
2022-05-05
Online:
2022-12-20
Published:
2022-12-29
Contact:
ZHAO Zhenxia
摘要:
固-液相变材料的品种多且潜热大,是潜热储热技术的重要工作介质。因其存在的液相泄漏问题,现阶段常将此类相变材料与多孔载体复合以提升相变材料的应用性能及使用寿命。金属有机骨架(MOFs)是一种新型多孔材料,具有高比表面积、高孔隙率以及孔径和表面性质可调控等优势,将其用作相变材料的载体具有潜在的发展前景。本文对MOF基复合相变材料的研究进行了全面综述,详细介绍了以MOFs为载体、以MOFs衍生多孔碳为载体和以MOFs原位生长于高导热基体所得复合材料为载体而制得的多种复合相变材料。MOFs的微孔结构所产生的强毛细管力对固-液相变材料有很强的固定作用;制备较大孔径的MOFs或者对MOFs进行修饰以调节MOF与相变材料间的相互作用,都有利于提高相变材料的负载率,从而提升复合相变材料的潜热;对MOFs进行高温碳化处理得到MOFs衍生多孔碳能有效解决MOFs孔径过小的问题,并能通过对其进行氮掺杂或磷掺杂来增强载体与相变材料间的氢键作用,从而获得具有高负载率和相变潜热的复合相变材料;为了增强MOF基复合相变材料的导热性能,先将MOFs原位合成在高导热基体上以利用高导热基体提供连续的传热网络,可以有效提升复合相变材料的导热系数。将原位生长在高导热基体上的MOFs进行高温碳化处理可以得到MOFs衍生多孔碳与高导热基体的复合材料,将其作为载体可以进一步增强复合相变材料的导热性能。文中最后指出,今后对于MOF基复合相变储热材料所用MOFs和相变材料的种类、MOFs与相变材料间相互作用对储热性能的影响、MOFs与相变材料复合后的稳定性等方面还需进一步探索,将MOFs的催化、检测等功能与相变材料的储热控温功能相结合制备多功能材料也是未来的发展方向之一。
中图分类号:
张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展, 2022, 41(12): 6408-6418.
ZHANG Xinyu, ZHAO Zhenxia. Research progress of metal-organic framework-based phase-change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6408-6418.
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-6C空心管 | 十八烷 | 80.0 | 187.0 | — | [ |
Zn-MOF | 聚乙二醇 | 85.0 | 159.8 | 0.384 | [ |
分级孔ZIF-67 | 聚乙二醇 | 84.8 | 144.1 | — | [ |
MOF-5 | 聚乙二醇纳米线 | 50.0 | 78.4 | 0.600 | [ |
MIL-101(Cr)-NH2 | 硬脂酸 | 70.0 | 110.0 | 0.375 | [ |
Cr-MIL-101-NH2@碳量子点 | 硬脂酸 | 70.0 | 132.0 | 0.410 | [ |
表1 不同MOF基复合相变材料的热性能
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-6C空心管 | 十八烷 | 80.0 | 187.0 | — | [ |
Zn-MOF | 聚乙二醇 | 85.0 | 159.8 | 0.384 | [ |
分级孔ZIF-67 | 聚乙二醇 | 84.8 | 144.1 | — | [ |
MOF-5 | 聚乙二醇纳米线 | 50.0 | 78.4 | 0.600 | [ |
MIL-101(Cr)-NH2 | 硬脂酸 | 70.0 | 110.0 | 0.375 | [ |
Cr-MIL-101-NH2@碳量子点 | 硬脂酸 | 70.0 | 132.0 | 0.410 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J·g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
MOF-5多孔碳 | 聚乙二醇 | 92.5 | 162.0 | 0.420 | [ |
MOF-5分级多孔碳 | 聚乙二醇 | 92.5 | 128.2 | 0.312 | [ |
NH2-MIL-53(Al)氮掺杂多孔碳 | 聚乙二醇 | 90.0 | 168.3 | 0.370 | [ |
ZIF-67磷掺杂多孔碳 | 月桂酸 | 80.0 | 124.0 | 1.050 | [ |
表2 不同MOFs衍生多孔碳基复合相变材料的热性能
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J·g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
MOF-5多孔碳 | 聚乙二醇 | 92.5 | 162.0 | 0.420 | [ |
MOF-5分级多孔碳 | 聚乙二醇 | 92.5 | 128.2 | 0.312 | [ |
NH2-MIL-53(Al)氮掺杂多孔碳 | 聚乙二醇 | 90.0 | 168.3 | 0.370 | [ |
ZIF-67磷掺杂多孔碳 | 月桂酸 | 80.0 | 124.0 | 1.050 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率//W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-NH2@碳纳米管 | 聚乙二醇 | 70.0 | 96.2 | 0.464 | [ |
Ni-MOF@膨胀石墨 | 三水乙酸钠 | 75.0 | 166.6 | 1.599 | [ |
MOF-5衍生多孔碳@还原氧化石墨烯 | 硬脂酸 | 90.0 | 168.7 | 0.600 | [ |
ZIF-8衍生多孔碳@碳纳米管 | 硬脂酸 | 75.0 | 155.7 | 1.023 | [ |
ZIF-67衍生多孔碳@膨胀石墨 | 硬脂酸 | — | 192.5 | 2.530 | [ |
ZIF-67衍生多孔碳@氧化铜纳米棒/泡沫铜 | 硬脂酸 | 42.0 | 78.5 | 0.810 | [ |
表3 不同导热增强型MOF基复合相变材料的热性能
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率//W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-NH2@碳纳米管 | 聚乙二醇 | 70.0 | 96.2 | 0.464 | [ |
Ni-MOF@膨胀石墨 | 三水乙酸钠 | 75.0 | 166.6 | 1.599 | [ |
MOF-5衍生多孔碳@还原氧化石墨烯 | 硬脂酸 | 90.0 | 168.7 | 0.600 | [ |
ZIF-8衍生多孔碳@碳纳米管 | 硬脂酸 | 75.0 | 155.7 | 1.023 | [ |
ZIF-67衍生多孔碳@膨胀石墨 | 硬脂酸 | — | 192.5 | 2.530 | [ |
ZIF-67衍生多孔碳@氧化铜纳米棒/泡沫铜 | 硬脂酸 | 42.0 | 78.5 | 0.810 | [ |
1 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
2 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. |
LI Shuankui, LIN Yuan, PAN Feng. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. | |
3 | 于永生, 井强山, 孙雅倩. 低温相变储能材料研究进展[J]. 化工进展, 2010, 29(5): 896-900, 913. |
YU Yongsheng, JING Qiangshan, SUN Yaqian. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 896-900, 913. | |
4 | 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44, 72. |
CHEN Aiying, WANG Xueying, CAO Xuezeng. Research and application of phase change material (PCM) used as energy storing material[J]. Materials Review, 2003, 17(5): 42-44, 72. | |
5 | LI Min, SHI Junbing. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction and Building Materials, 2019, 194: 287-310. |
6 | WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965. |
7 | LEI Jie, YANG Changchuan, HUANG Xuhui, et al. Solidification enhancement of phase change materials using nanoparticles and metal foams with nonuniform porosity[J]. Journal of Energy Storage, 2021, 44: 103420. |
8 | YUAN Mengdi, REN Yunxiu, XU Chao, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222. |
9 | TIAN Heqing, WANG Weilong, DING Jing, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194. |
10 | SUN Keyan, KOU Yan, ZHANG Yanwei, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453. |
11 | LIU Yurong, XIA Yongpeng, AN Kang, et al. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior[J]. Journal of Materials Science & Technology, 2019, 35(5): 939-945. |
12 | LIU Lu, HU Jin, FAN Xiaoqiao, et al. Phase change materials with Fe3O4/GO three-dimensional network structure for acoustic-thermal energy conversion and management[J]. Chemical Engineering Journal, 2021, 426: 130789. |
13 | CAO Ruirui, LI Xuan, CHEN Sai, et al. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites[J]. Energy, 2017, 138: 157-166. |
14 | 陈文艺, 陆启玉, 钟南京. 金属有机骨架固定脂肪酶的研究进展[J]. 河南工业大学学报(自然科学版), 2021, 42(2): 121-128, 135. |
CHEN Wenyi, LU Qiyu, ZHONG Nanjing. Recent advances in lipase immobilization by metal-organic frameworks[J]. Journal of Henan University of Technology (Natural Science Edition), 2021, 42(2): 121-128, 135. | |
15 | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
16 | HAN Li, ZHANG Xiaomin, WU Deyong. Construction and characterization of BiOI/NH2-MIL-125(Ti) heterostructures with excellent visible-light photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3773-3781. |
17 | FU Yangjie, ZHANG Kejie, ZHANG Yi, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engineering Journal, 2021, 412: 128722. |
18 | KWON Dong il, KIM Jeong Chul, LEE Haesol, et al. Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions[J]. Chemical Engineering Journal, 2022, 427: 131461. |
19 | MOHD AZMI Luqman Hakim, CHERUKUPALLY Pavani, Elwin HUNTER-SELLARS, et al. Fabrication of MIL-101-polydimethylsiloxane composites for environmental toluene abatement from humid air[J]. Chemical Engineering Journal, 2022, 429: 132304. |
20 | XIE Linhua, LIU Xiaomin, HE Tao, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
21 | JI Chenghan, REN Yi, YU Hang, et al. Highly efficient and selective Hg(Ⅱ) removal from water by thiol-functionalized MOF-808: kinetic and mechanism study[J]. Chemical Engineering Journal, 2022, 430: 132960. |
22 | MA Xiaoyan, WANG Lei, WANG Hong, et al. Insights into metal-organic frameworks HKUST-1 adsorption performance for natural organic matter removal from aqueous solution[J]. Journal of Hazardous Materials, 2022, 424(Pt C): 126918. |
23 | ZENG Yifang, CAMARADA María Belén, LU Xinyu, et al. Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode[J]. Food Chemistry, 2022, 370: 131024. |
24 | MA Junping, BAI Wushuang, ZHENG Jianbin. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions[J]. Biosensors and Bioelectronics, 2022, 197: 113801. |
25 | WANG Deqing, ZHENG Pu, CHEN Pengcheng, et al. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin[J]. Bioresource Technology, 2021, 323: 124611. |
26 | ZHAO Zhenghong, HUANG Yaojing, LIU Wenren, et al. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4481-4488. |
27 | KONG Xiangjing, LI Jianrong. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8): 1115-1139. |
28 | ZAHIR Md Hasan, HELAL Aasif, HAKEEM Abbas S. Hybrid polyMOF materials prepared by combining an organic polymer with a MOF and their application for solar thermal energy storage[J]. Energy & Fuels, 2021, 35(12): 10199-10209. |
29 | CHEN Xi, KONG Xiangyun, WANG Shuaiyin, et al. Facile preparation of metal/metal-organic frameworks decorated phase change composite materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 40: 102711. |
30 | 陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903. |
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/(tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. | |
31 | CHEN Xiao, GAO Hongyi, TANG Zhaodi, et al. Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell Reports Physical Science, 2020, 1(10): 100218. |
32 | 原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
YUAN Ye, WANG Ming, ZHOU Yunqi, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450. | |
33 | LUAN Yi, YANG Ming, MA Qianqian, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
34 | KANG Hyungmook, DAMES Chris, URBAN Jeffrey J. Melting point depression and phase identification of sugar alcohols encapsulated in ZIF nanopores[J]. The Journal of Physical Chemistry C, 2021, 125(18): 10001-10010. |
35 | TANG Jia, CHEN Xingyu, ZHANG Liguo, et al. Alkylated meso-macroporous metal-organic framework hollow tubes as nanocontainers of octadecane for energy storage and thermal regulation[J]. Small, 2018, 14(35): e1801970. |
36 | ATINAFU Dimberu G, CHANG Seong Jin, KIM Ki Hyun, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: 124430. |
37 | FU Yilin, ZHEN Liping, ZHOU Bo, et al. New strategy of synthesizing zeolitic imidazolate framework-67 with hierarchical pores for heat storage[J]. Materials Letters, 2021, 293: 129722. |
38 | 海广通, 薛祥东, 苏天琪, 等. 金属有机骨架与相变芯材相互作用的分子动力学[J]. 工程科学学报, 2020, 42(1): 99-105. |
Guangtong HAI, XUE Xiangdong, SU Tianqi, et al. Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials[J]. Chinese Journal of Engineering, 2020, 42(1): 99-105. | |
39 | LI Pei, FENG Daili, FENG Yanhui, et al. Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: a molecular dynamics simulation[J]. Case Studies in Thermal Engineering, 2021, 26: 101027. |
40 | FENG Daili, FENG Yanhui, ZANG Yuyang, et al. Phase change in modified metal organic frameworks MIL-101(Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132. |
41 | CHEN Xiao, GAO Hongyi, YANG Mu, et al. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials[J]. Energy Storage Materials, 2019, 18: 349-355. |
42 | 周奇, 吴宇恩. 热解法制备MOF衍生多孔碳材料研究进展[J]. 科学通报, 2018, 63(22): 2246-2267. |
ZHOU Qi, WU Yuen. Research progress on prepartion of MOF-derived porous carbon materials through pyrolysis[J]. Chinese Science Bulletin, 2018, 63(22): 2246-2267. | |
43 | TANG Jia, YANG Ming, DONG Wenjun, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114. |
44 | FENG Dai-Li, ZANG Yu-Yang, LI Pei, et al. Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability[J]. Composites Science and Technology, 2021, 210: 108832. |
45 | ATINAFU Dimberu G, DONG Wenjun, HOU Changmin, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy, 2019, 12: 239-249. |
46 | WANG Miao, LIU Mingming, LI Pan, et al. Lauric acid encapsulated in P-doped carbon matrix with reinforced heat storage performance for efficient battery cooling[J]. Journal of Energy Storage, 2021, 44: 103461. |
47 | ISLAMOV Meiirbek, BABAEI Hasan, WILMER Christopher E. Influence of missing linker defects on the thermal conductivity of metal-organic framework HKUST-1[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56172-56177. |
48 | KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502. |
49 | WANG Jingjing, HUANG Xiubing, GAO Hongyi, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350: 164-172. |
50 | XU Tao, CHEN Qinglin, HUANG Gongsheng, et al. Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146. |
51 | HU Tao, CHANG Shuya, WU Hongzheng, et al. Construction of high thermal conductivity MOFs composite phase change materials with reinforced light-to-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111339. |
52 | LI Ang, DONG Cheng, DONG Wenjun, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32093-32101. |
53 | LI Ang, WANG Jingjing, DONG Cheng, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity[J]. Applied Energy, 2018, 217: 369-376. |
54 | LI Dan, CHENG Xiaomin, LI Yuanyuan, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142-149. |
55 | WANG Miao, LI Pan, YU Faquan. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605. |
56 | ATINAFU Dimberu G, YUN Beom Yeol, YANG Sungwoong, et al. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability[J]. Journal of Hazardous Materials, 2022, 423: 127147. |
57 | DONG Cheng, LI Ang, WANG Chen, et al. Engineering attractive interaction in ZIF-based phase change materials for boosting electro-and photo-driven thermal energy storage[J]. Chemical Engineering Journal, 2022, 430: 133007. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[6] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[7] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[8] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[9] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |