化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1944-1960.DOI: 10.16085/j.issn.1000-6613.2022-1132
万茂华1(), 张小红2, 安兴业1(), 龙垠荧1, 刘利琴1, 管敏1, 程正柏2, 曹海兵2, 刘洪斌1()
收稿日期:
2022-06-16
修回日期:
2022-08-12
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
安兴业,刘洪斌
作者简介:
万茂华(1998—),男,硕士研究生,研究方向为MXene复合生物质基储能材料。E-mail:2592701599@qq.com。
基金资助:
WAN Maohua1(), ZHANG Xiaohong2, AN Xingye1(), LONG Yinying1, LIU Liqin1, GUAN Min1, CHENG Zhengbai2, CAO Haibing2, LIU Hongbin1()
Received:
2022-06-16
Revised:
2022-08-12
Online:
2023-04-25
Published:
2023-05-08
Contact:
AN Xingye, LIU Hongbin
摘要:
MXene是一种类石墨烯结构的层状二维纳米材料,具有高导电性和高比表面积等优点,常用在储能领域。MXene含有丰富的端基官能团,易与生物质纳米材料形成交联结构并拓宽其层间距,从而提高储能器件的柔韧性及提供更多的离子传输通道。故MXene用于生物质储能纳米材料逐渐成为研究热点之一。本文综述了近年来MXene复合生物质基纳米材料在储能领域中的应用,首先介绍了不同MXene的制备方法及其优劣势,其次分别介绍了用CNF、BC、CNC等材料对MXene储能器件的优化改性方法,并总结了MXene复合生物质纳米材料在超级电容器、纳米发电机、二次电池等三种前沿储能器件中的物化特点及性能优势,重点分析了生物质纳米材料在MXene/生物质纳米复合材料中的功能。最后,对MXene复合生物质纳米材料在储能领域所面临的挑战及其未来应用前景进行了分析与展望。
中图分类号:
万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960.
WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960.
方法 | 前体 | 化学药品 | MXene | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
HF酸蚀刻 | Ti3AlC2 | HF酸 | Ti3C2 | 最广泛的蚀刻方法 | 对环境和人体有害 | [ |
酸/氟盐蚀刻 | V2AlC | HCl+LiF | V2C | 缺陷密度低稳定性高 | F原子的电负性大,降低导电性 | [ |
化学气相沉积(CVD) | Ti3AlC2 | HCl+LiF | Ti3C2 | 晶体横向尺寸大,高温高压下较稳定 | 沉积的反应源和反应后的余气易燃,易爆或有毒 | [ |
碱性蚀刻 | Ti3AlC2 | KOH | Ti3C2 | 提供更多的电活性中心 | 容易产生氢氧化铝覆盖在MAX相阻碍蚀刻 | [ |
高温蚀刻 | Ti4AlN3 | KF+LiF+NaF | Ti4N3 | 通过热能断裂M—A键 | 所需温度较高 | [ |
盐酸蚀刻 | Ti2AlC | HCl | Ti2C | 层间距增加,促进离子嵌入 | 蚀刻的温度,时间较为严苛 | [ |
表1 MXene材料的不同制备方法、原料、产物及其优缺点
方法 | 前体 | 化学药品 | MXene | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
HF酸蚀刻 | Ti3AlC2 | HF酸 | Ti3C2 | 最广泛的蚀刻方法 | 对环境和人体有害 | [ |
酸/氟盐蚀刻 | V2AlC | HCl+LiF | V2C | 缺陷密度低稳定性高 | F原子的电负性大,降低导电性 | [ |
化学气相沉积(CVD) | Ti3AlC2 | HCl+LiF | Ti3C2 | 晶体横向尺寸大,高温高压下较稳定 | 沉积的反应源和反应后的余气易燃,易爆或有毒 | [ |
碱性蚀刻 | Ti3AlC2 | KOH | Ti3C2 | 提供更多的电活性中心 | 容易产生氢氧化铝覆盖在MAX相阻碍蚀刻 | [ |
高温蚀刻 | Ti4AlN3 | KF+LiF+NaF | Ti4N3 | 通过热能断裂M—A键 | 所需温度较高 | [ |
盐酸蚀刻 | Ti2AlC | HCl | Ti2C | 层间距增加,促进离子嵌入 | 蚀刻的温度,时间较为严苛 | [ |
1 | 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14. |
DANG Alei, FANG Chenglin, ZHAO Zhao, et al. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48(4): 1-14. | |
2 | 张建峰, 曹惠杨, 王红兵. 新型二维材料MXene的研究进展[J]. 无机材料学报, 2017, 32(6): 561-570. |
ZHANG Jianfeng, CAO Huiyang, WANG Hongbing. Research progress of novel two-dimensional material MXene[J]. Journal of Inorganic Materials, 2017, 32(6): 561-570. | |
3 | 刘文龙, 林涛, 李婧, 等. MXene材料储能应用研究进展[J]. 成都大学学报(自然科学版), 2020, 39(1): 8-14. |
LIU Wenlong, LIN Tao, LI Jing, et al. Research on application of MXene materials for energy storage[J]. Journal of Chengdu University (Natural Science Edition), 2020, 39(1): 8-14. | |
4 | 沈斯崎, 吴强, 李俊. MXene材料的制备、电化学储能性能研究现状[J]. 材料科学与工程学报, 2021, 39(3): 515-526. |
SHEN Siqi, WU Qiang, LI Jun. Review on preparation and electrochemical performance of mxene materials[J]. Journal of Materials Science and Engineering, 2021, 39(3): 515-526. | |
5 | 齐新, 陈翔, 彭思侃, 等. MXene二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20. |
QI Xin, CHEN Xiang, PENG Sikan, et al. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47(12): 10-20. | |
6 | 陈达, 石宇晴, 张伟, 等. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95. |
CHEN Da, SHI Yuqing, ZHANG Wei, et al. Research progress in electrochemical sensors based on MXene[J]. Journal of Materials Engineering, 2022, 50(4): 85-95. | |
7 | 郑伟, 杨莉, 张培根, 等. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537. |
ZHENG Wei, YANG Li, ZHANG Peigen, et al. Energy storage and application for 2D nano-material MXenes[J]. Materials Review, 2018, 32(15): 2513-2537. | |
8 | WANG Yu, LI Sisi, YANG Haiyan, et al. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC Advances, 2020, 10(26): 15328-15345. |
9 | XIE Xiuqiang, ZHAO Mengqiang, ANASORI Babak, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26: 513-523. |
10 | GAO Guangying, YANG Song, WANG Shulan, et al. Construction of 3D porous MXene supercapacitor electrode through a dual-step freezing strategy[J]. Scripta Materialia, 2022, 213: 114605. |
11 | YANG Cuizhen, HUANG Huajie, HE Haiyan, et al. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications[J]. Coordination Chemistry Reviews, 2021, 435: 213806. |
12 | REZAKAZEMI Mashallah, ARABI SHAMSABADI Ahmad, LIN Haiqing, et al. Sustainable MXenes-based membranes for highly energy-efficient separations[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110878. |
13 | SUN S J, LIAO C, HAFEZ A M, et al. Two-dimensional MXenes for energy storage[J]. Chemical Engineering Journal, 2018, 338: 27-45. |
14 | ASLAM M K, ALGARNI T S, JAVED M S, et al. 2D MXene materials for sodium ion batteries: A review on energy storage[J]. Journal of Energy Storage, 2021, 37: 102478. |
15 | DONG Y C, MALLINENI S S, MALESKI K, et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators[J]. Nano Energy, 2018, 44: 103-110. |
16 | XU Shuaikai, WEI Guodong, LI Junzhi, et al. Binder-free Ti3C2T x MXene electrode film for supercapacitor produced by electrophoretic deposition method[J]. Chemical Engineering Journal, 2017, 317: 1026-1036. |
17 | ZHANG Xu, ZHANG Zihe, ZHOU Zhen. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. |
18 | YANG Weijuan, CHEN Jinghua, CHEN Guonan, et al. The early diagnosis and fast detection of blast fungus, Magnaporthe grisea, in rice plant by using its chitinase as biochemical marker and a rice cDNA encoding mannose-binding lectin as recognition probe[J]. Biosensors and Bioelectronics, 2013, 41: 820-826. |
19 | XIONG Dongbin, SHI Yumeng, YANG Huiying. Rational design of MXene-based films for energy storage: progress, prospects[J]. Materials Today, 2021, 46: 183-211. |
20 | SHAKER M, GHAZVINI A A, CAO W Q, et al. Biomass-derived porous carbons as supercapacitor electrodes—A review[J]. New Carbon Materials, 2021, 36(3): 546-572. |
21 | YANG Zhou, XIANG Meng, ZHU Wen, et al. Biomass heteroatom carbon/cerium dioxide composite nanomaterials electrode for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6675-6681. |
22 | LEE S Y, CHOI Y J, KIM J K, et al. Biomass-garlic-peel-derived porous carbon framework as a sulfur host for lithium-sulfur batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 272-281. |
23 | LI Yao, MOU Binshan, LIANG Yeru, et al. Component degradation-enabled preparation of biomass-based highly porous carbon materials for energy storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15259-15266. |
24 | ZHU Jinglian, SHI Rui, LIU Yana, et al. 3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery[J]. Applied Surface Science, 2020, 528: 146985. |
25 | ZHOU Guoqiang, LI Meichun, LIU Chaozheng, et al. 3D printed Ti3C2T x MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance[J]. Advanced Functional Materials, 2022, 32(14): 2109593. |
26 | XU Yanglei, ZHANG Kejian, CHEN Sheng, et al. Two-dimensional lamellar MXene/three-dimensional network bacterial nanocellulose nanofiber composite Janus membranes as nanofluidic osmotic power generators[J]. Electrochimica Acta, 2022, 412: 140162. |
27 | ZAHRA Qurat ul Ain, ULLAH Salim, SHAHZAD Faisal, et al. MXene-based aptasensors: Advances, challenges, and prospects[J]. Progress in Materials Science, 2022, 129: 100967. |
28 | LI Zhengyang, WANG Libo, SUN Dandan, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2 [J]. Materials Science and Engineering: B, 2015, 191: 33-40. |
29 | MENG Weixue, LIU Xingjiang, SONG Haoqiang, et al. Advances and challenges in 2D MXenes: From structures to energy storage and conversions[J]. Nano Today, 2021, 40: 101273. |
30 | SRIMUK Pattarachai, KAASIK Friedrich, Benjamin KRÜNER, et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(47): 18265-18271. |
31 | MING Fangwang, LIANG Hanfeng, ZHANG Wenli, et al. Porous MXenes enable high performance potassium ion capacitors[J]. Nano Energy, 2019, 62: 853-860. |
32 | YANG Bingjun, LIU Bao, CHEN Jiangtao, et al. Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode[J]. Chemical Engineering Journal, 2022, 429: 132392. |
33 | ZHANG Qingxiao, HE Jing, FU Xueli, et al. Fluorine-free strategy for hydroxylated Ti3C2/Ti3AlC2 catalysts with enhanced aerobic oxidative desulfurization and mechanism[J]. Chemical Engineering Journal, 2022, 430: 132950. |
34 | URBANKOWSKI Patrick, ANASORI Babak, MAKARYAN Taron, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
35 | SUN Wanmei, SHAH Smit, CHEN Yexiao, et al. Electrochemical etching of Ti2AlC to Ti2CT x (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-21668. |
36 | KURRA Narendra, AHMED Bilal, GOGOTSI Yury, et al. MXene-on-paper coplanar microsupercapacitors[J]. Advanced Energy Materials, 2016, 6(24): 1601372. |
37 | HU Minmin, HU Tao, LI Zhaojin, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2T x MXene[J]. ACS Nano, 2018, 12(4): 3578-3586. |
38 | GARG Ruby, AGARWAL Alpana, AGARWAL Mohit. A review on MXene for energy storage application: Effect of interlayer distance[J]. Materials Research Express, 2020, 7(2): 022001. |
39 | ZHENG Xianghong. Enhancing the ion accessibility of Ti3C2T x MXene films by femtosecond laser ablation towards high-rate supercapacitors[J]. Journal of Alloys and Compounds, 2022, 899: 163275. |
40 | YAO Mengyao, CHEN Yaoyan, WANG Zhe, et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors[J]. Chemical Engineering Journal, 2020, 395: 124057. |
41 | AAKYIIR Mathias, YU Huimin, ARABY Sherif, et al. Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification[J]. Chemical Engineering Journal, 2020, 397: 125439. |
42 | PAZNIAK Hanna, BENCHAKAR Mohamed, BILYK Thomas, et al. Ion implantation as an approach for structural modifications and functionalization of Ti3C2T x MXenes[J]. ACS Nano, 2021, 15(3): 4245-4255. |
43 | WANG Yuanming, WANG Xue, LI Xiaolong, et al. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance[J]. Advanced Functional Materials, 2019, 29(14): 1900326. |
44 | WANG Zhihe, WANG Yixuan, GU Qinhua, et al. Multi-ion intercalated Ti3C2T x MXene and the mutual modulation within interlayer[J]. Particuology, 2023, 72: 10-16. |
45 | Magdalena SZYMAŃSKA, HOPPE Jakub, DUTKIEWICZ Michał, et al. Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity[J]. International Journal of Biological Macromolecules, 2022, 208: 642-653. |
46 | BALACHANDRAKURUP Venugopal, GEORGE Neena, GOPALAKRISHNAN Jayalatha. Effect of compatibiliser on the mechanical, rheological and thermal properties of natural rubber/cellulose nanofibre composites[J]. Materials Today: Proceedings, 2021, 47: 5345-5350. |
47 | ELMETWALY T E, DARWISH S S, ATTIA N F, et al. Cellulose nanocrystals and its hybrid composite with inorganic nanotubes as green tool for historical paper conservation[J]. Progress in Organic Coatings, 2022, 168: 106890. |
48 | CAI Chenyang, WEI Zechang, DENG Leixin, et al. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54170-54184. |
49 | TIAN W Q, VAHIDMOHAMMADI A, REID M S, et al. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose[J]. Advanced Materials, 2019, 31(41): 1902977. |
50 | JIA Xichen, SHEN Bin, ZHANG Lihua, et al. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating[J]. Composites Part B: Engineering, 2020, 198: 108250. |
51 | ZHU Yachao, Khalil RAJOUÂ, LE VOT Steven, et al. Modifications of MXene layers for supercapacitors[J]. Nano Energy, 2020, 73: 104734. |
52 | LI Ke, WANG Xuehang, WANG Xiaofeng, et al. All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors[J]. Nano Energy, 2020, 75: 104971. |
53 | LU Chengxing, LI Anran, ZHAI Tengfei, et al. Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors[J]. Energy Storage Materials, 2020, 26: 472-482. |
54 | SUN Yijing, CHEN Dongsheng, LIANG Ziqi. Two-dimensional MXenes for energy storage and conversion applications[J]. Materials Today Energy, 2017, 5: 22-36. |
55 | NAM S, KIM J N, OH S, et al. Ti3C2T x MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators[J]. APL Materials, 2020, 8(11): 110701. |
56 | 张创, 王诚, 汪云, 等. 一维/二维混合负载Pt催化剂的电化学性能[J]. 化工进展, 2017, 36(2): 573-580. |
ZHANG Chuang, WANG Cheng, WANG Yun, et al. High performance Pt electrocatalyst based on 1D-2D mixed materials[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 573-580. | |
57 | PANG Jinbo, CHANG Bin, LIU Hong, et al. Potential of MXene-based heterostructures for energy conversion and storage[J]. ACS Energy Letters, 2022, 7(1): 78-96. |
58 | YU Lanyong, HU Longfeng, ANASORI Babak, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters, 2018, 3(7): 1597-1603. |
59 | FAN Zhimin, WANG Youshan, XIE Zhimin, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage[J]. Nanoscale, 2018, 10(20): 9642-9652. |
60 | HE S Y, ZHU Q Z, SOOMRO R A, et al. MXene derivatives for energy storage applications[J]. Sustainable Energy & Fuels, 2020, 4(10): 4988-5004. |
61 | LI Li, WU Shumeng, WU Ke, et al. Carbon dot-regulated 2D MXene films with high volumetric capacitance[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13969-13978. |
62 | CHANG Libo, PENG Zhiyuan, ZHANG Tong, et al. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors[J]. Nanoscale, 2021, 13(5): 3079-3091. |
63 | CHEN Weimin, ZHANG Daotong, YANG Kai, et al. Mxene (Ti3C2T x )/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors[J]. Chemical Engineering Journal, 2021, 413: 127524. |
64 | CHEN Jizhang, CHEN Hao, CHEN Minfeng, et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors[J]. Chemical Engineering Journal, 2022, 428: 131380. |
65 | YU Chenyang, AN Jianing, CHEN Qiang, et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors[J]. Small Methods, 2020, 4(6): 1900824. |
66 | 李瑞, 谢芳霞, 朱巧霞, 等. 基于聚苯胺改性构建三维MXene复合材料及其电容性能[J]. 化工进展, 2021, 40(11): 6211-6218. |
LI Rui, XIE Fangxia, ZHU Qiaoxia, et al. Preparation of three-dimensional MXene composite materials based on polyaniline modification and its capacitive performance[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6211-6218. . | |
67 | 杨蒙蒙, 姚卫棠. 生物质碳材料在钾离子电池负极材料中的应用[J]. 化工进展, 2021, 40(3): 1495-1505. |
YANG Mengmeng, YAO Weitang. Application of biomass carbonmaterial in anodematerial of potassium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1495-1505. | |
68 | JIAO Shangqing, ZHOU Aiguo, WU Mingzai, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science, 2019, 6(12): 1900529. |
69 | WU Yudong, HU Haibo, YUAN Changzhou, et al. Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays[J]. Nano Energy, 2020, 74: 104812. |
70 | CAO Zhiqian, FU Jimin, WU Mingzai, et al. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density[J]. Energy Storage Materials, 2021, 40: 10-21. |
71 | PAN Qian, DUAN Chunyang, LIU Hongying, et al. Hierarchical vertically aligned titanium carbide (MXene) array for flexible all-solid-state supercapacitor with high volumetric capacitance[J]. ACS Applied Energy Materials, 2019, 2(9): 6834-6840. |
72 | LIAO Leiping, ZHANG Aitang, ZHENG Kun, et al. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28222-28230. |
73 | TONG Liang, JIANG Cong, CAI Kefeng, et al. High-performance and freestanding PPy/Ti3C2T x composite film for flexible all-solid-state supercapacitors[J]. Journal of Power Sources, 2020, 465: 228267. |
74 | CAI Chenyang, ZHOU Wenbin, FU Yu. Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor[J]. Chemical Engineering Journal, 2021, 418: 129275. |
75 | SUN Li, FU Qiang, PAN Chunxu. Hierarchical porous “skin/skeleton”-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors[J]. Journal of Hazardous Materials, 2021, 410: 124565. |
76 | SHANG Mingwei, CHEN Xi, LI Bangxing, et al. A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode[J]. ACS Nano, 2020, 14(3): 3678-3686. |
77 | ZHAO Yao, LI Qing, LIU Zhan, et al. Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37967-37976. |
78 | ZHANG Wenjie, PAN Zhengze, Wei LYU, et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2T x MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon, 2019, 153: 625-633. |
79 | WANG Caoyu, ZHENG Zijian, FENG Yongqiang, et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries[J]. Nano Energy, 2020, 74: 104817. |
80 | PARK Jae Hyun, CHOI Won Yeong, YANG Jeongwoo, et al. Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery[J]. Carbon, 2021, 172: 624-636. |
81 | WANG Yuankun, ZHANG Ruifang, PANG Yuanchao, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 16: 228-235. |
82 | LIU Yane, ZHANG Mingang, GAO Yanan, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating[J]. Journal of Alloys and Compounds, 2022, 898: 162821. |
83 | LI Enrong, PAN Yamin, WANG Chunfeng, et al. Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications[J]. Chemical Engineering Journal, 2021, 420: 129864. |
84 | HUANG Jieyu, HAO Yi, ZHAO Min, et al. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24774-24784. |
85 | YANG Wei, CHEN Huamin, WU Mingqiang, et al. A flexible triboelectric nanogenerator based on cellulose-reinforced MXene composite film[J]. Advanced Materials Interfaces, 2022, 9(7): 2102124. |
86 | SARDANA Sagar, KAUR Harpreet, ARORA Bindiya, et al. Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator[J]. ACS sensors, 2022, 7(1): 312-321. |
87 | WANG Yonglan, FAN Leqing, SUN Sijia, et al. Ti3C2T x MXene supported SnO2 quantum dots with oxygen vacancies as anode for Li-ion capacitors[J]. Chemical Engineering Journal, 2022, 428: 131993. |
88 | TAN Liwen, WEI Chuanliang, ZHANG Yuchan, et al. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte[J]. Journal of Energy Chemistry, 2022, 69: 221-230. |
[1] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[2] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[3] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[4] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[5] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[6] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[7] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[8] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[9] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[10] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[11] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[15] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |