化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4432-4446.DOI: 10.16085/j.issn.1000-6613.2022-1817
杨鹏威1(), 于琳竹1(), 王放放2, 蒋昊轩1, 赵光金2, 李琦1, 杜铭哲1, 马双忱1()
收稿日期:
2022-09-28
修回日期:
2023-01-29
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
马双忱
作者简介:
杨鹏威(1995—),男,博士研究生,主要从事电厂水化学,电催化合成,储能等方向的研究。E-mail: 18810676955@163.com基金资助:
YANG Pengwei1(), YU Linzhu1(), WANG Fangfang2, JIANG Haoxuan1, ZHAO Guangjin2, LI Qi1, DU Mingzhe1, MA Shuangchen1()
Received:
2022-09-28
Revised:
2023-01-29
Online:
2023-08-15
Published:
2023-09-19
Contact:
MA Shuangchen
摘要:
储能技术及其产业化应用对建设新型电力系统具有重大意义。在传统电力系统到新型电力系统升级转型的过程中,风能、太阳能等新能源发电占比持续提高,但其波动性和间歇性制约了对新能源的高水平消纳,导致电力系统对灵活性调节资源的需求剧增。氨具有大规模、跨季节和跨区域储存的优势,加快氨能产业发展和氨储能在新型电力系统中的应用,是实现“双碳”目标和保障国家能源安全的战略性选择。本文对比了氨储能和其他储能系统的特征,比较了氨储能与氢储能、甲醇储能等化学储能的共性及优缺点,重点介绍了目前国内外现有的氨储能技术、氨储运方式和低浓度氨分离技术,阐述了氨储能在电源侧、电网侧和用户侧的应用价值,最后,指出了氨储能在新型电力系统中应用面临的挑战,并展望了其未来发展。
中图分类号:
杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446.
YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446.
储能技术 | 体积能量 密度/GJ·m-3 | 适合储能 周期 | 寿命 /年 | 单位功率成本 /USD·kW-1 | 储能效率/% | 优势 | 劣势 | 应用范围 |
---|---|---|---|---|---|---|---|---|
机械储能 | ||||||||
抽水储能 | 7.2×10-4~ 7.2×10-3 | 数小时~数月 | 40~60 | 700~900 | 65~85 | 容量大、出力变率快、运行费用低 | 受环境制约 | 日负荷调节、频率控制、系统备用 |
压缩空气储能 | 7.2×10-3~ 2.16×10-2 | 数小时~数月 | 20~40 | 700 | 70~89 | 储能容量大 | 受地质条件影响更大、需要气体燃料 | 分布式储能和发电系统备用 |
飞轮储能 | 0.072~0.3 | 数秒~数分 | 0~15 | 220~1500 | >80 | 高效率、快响应、长寿命 | 成本高、技术待完善 | 适合短时小容量储能和长时间大容量储能之间的场合 |
电化学储能 | ||||||||
铅酸电池 | 0.18~0.3 | 数分~数天 | 5~15 | 230 | 70~90 | 成本低、技术成熟 | 寿命短、污染环境、需要回收 | 备用电源、频率控制 |
钠硫电池 | 0.54~1.41 | 数秒~数小时 | 10~15 | 150 | 70~90 | 储能密度大、效率高 | 成本高、安全性差 | 电力储能 |
锂离子电池 | 1.08~2.7 | 数分~数天 | 5~15 | 220 | 85~89 | 储能密度高,循环寿命长 | 成本高、安全性差 | 新能源储能,电动汽车 |
全钒液流电池 | 5.4×10-2~ 9×10-2 | 数小时~数月 | 5~10 | 250 | 60~85 | 快响应、高输出、充放电转化效率高 | 自放电率低、能量密度低 | 备用电源、削峰、能量管理、再生能源集成 |
电磁储能 | ||||||||
超导储能 | 2.16×10-2 | 数分~数小时 | >20 | >1000 | >95 | 功率高 | 能量密度低、成本高、需维护 | 输配电系统稳定性、电能质量调节 |
超级电容器 | 0.036~0.11 | 数秒~数小时 | >20 | 100~150 | <75 或>95 | 储能大、充放电速度快 | 能量密度低、放电时间短 | 适合高峰值功率、低容量场合 |
化学储能 | ||||||||
氢储能 | 3 | 长周期 | 15~50 | 1500~2400 | 35~55 | 清洁无污染,储能密度高 | 制造成本较高、安全性问题 | 生产侧和消费侧跨季节、跨区域的能源优化配置 |
氨储能 | 11.8 | 长周期 | 15~25 | 1200~2200 | 25~40 | 成本较低,运输安全 | 稳定性低、氨具有毒性 | 作为化工原料,生产侧和消费侧跨季节、跨区域的能源优化配置 |
甲醇储能 | 12 | 长周期 | 10~35 | 1800~2500 | 30~40 | 成本较低,生产简单,良好的储氢材料 | 热值低、焚烧能耗高 | 交通燃料、供热燃料和灶用燃料。能源优化配置 |
热储能 | 0.18~1.8 | 数分~数月 | 5~15 | — | — | 技术成熟、成本低、寿命长、规模易扩展且储能规模越大效率越高 | 能量转化过程损耗大 | 火电厂余热的回收再利用、太阳能光热发电、熔融盐储热 |
表1 不同储能技术特征比较[14-30]
储能技术 | 体积能量 密度/GJ·m-3 | 适合储能 周期 | 寿命 /年 | 单位功率成本 /USD·kW-1 | 储能效率/% | 优势 | 劣势 | 应用范围 |
---|---|---|---|---|---|---|---|---|
机械储能 | ||||||||
抽水储能 | 7.2×10-4~ 7.2×10-3 | 数小时~数月 | 40~60 | 700~900 | 65~85 | 容量大、出力变率快、运行费用低 | 受环境制约 | 日负荷调节、频率控制、系统备用 |
压缩空气储能 | 7.2×10-3~ 2.16×10-2 | 数小时~数月 | 20~40 | 700 | 70~89 | 储能容量大 | 受地质条件影响更大、需要气体燃料 | 分布式储能和发电系统备用 |
飞轮储能 | 0.072~0.3 | 数秒~数分 | 0~15 | 220~1500 | >80 | 高效率、快响应、长寿命 | 成本高、技术待完善 | 适合短时小容量储能和长时间大容量储能之间的场合 |
电化学储能 | ||||||||
铅酸电池 | 0.18~0.3 | 数分~数天 | 5~15 | 230 | 70~90 | 成本低、技术成熟 | 寿命短、污染环境、需要回收 | 备用电源、频率控制 |
钠硫电池 | 0.54~1.41 | 数秒~数小时 | 10~15 | 150 | 70~90 | 储能密度大、效率高 | 成本高、安全性差 | 电力储能 |
锂离子电池 | 1.08~2.7 | 数分~数天 | 5~15 | 220 | 85~89 | 储能密度高,循环寿命长 | 成本高、安全性差 | 新能源储能,电动汽车 |
全钒液流电池 | 5.4×10-2~ 9×10-2 | 数小时~数月 | 5~10 | 250 | 60~85 | 快响应、高输出、充放电转化效率高 | 自放电率低、能量密度低 | 备用电源、削峰、能量管理、再生能源集成 |
电磁储能 | ||||||||
超导储能 | 2.16×10-2 | 数分~数小时 | >20 | >1000 | >95 | 功率高 | 能量密度低、成本高、需维护 | 输配电系统稳定性、电能质量调节 |
超级电容器 | 0.036~0.11 | 数秒~数小时 | >20 | 100~150 | <75 或>95 | 储能大、充放电速度快 | 能量密度低、放电时间短 | 适合高峰值功率、低容量场合 |
化学储能 | ||||||||
氢储能 | 3 | 长周期 | 15~50 | 1500~2400 | 35~55 | 清洁无污染,储能密度高 | 制造成本较高、安全性问题 | 生产侧和消费侧跨季节、跨区域的能源优化配置 |
氨储能 | 11.8 | 长周期 | 15~25 | 1200~2200 | 25~40 | 成本较低,运输安全 | 稳定性低、氨具有毒性 | 作为化工原料,生产侧和消费侧跨季节、跨区域的能源优化配置 |
甲醇储能 | 12 | 长周期 | 10~35 | 1800~2500 | 30~40 | 成本较低,生产简单,良好的储氢材料 | 热值低、焚烧能耗高 | 交通燃料、供热燃料和灶用燃料。能源优化配置 |
热储能 | 0.18~1.8 | 数分~数月 | 5~15 | — | — | 技术成熟、成本低、寿命长、规模易扩展且储能规模越大效率越高 | 能量转化过程损耗大 | 火电厂余热的回收再利用、太阳能光热发电、熔融盐储热 |
国家或地区 | 时间 | 政策/研究案例 |
---|---|---|
日本 | 2020年底 | 公布“绿色增长战略”行动计划,氨能被重点提及 |
2021年4月 | 日本政府计划:到2050年氢气和氨气发电将占日本总能源产量的10%左右;经济产业省计划:到2030年利用氨与燃煤混烧替代日本燃煤发电站20%的煤炭供应,未来这一比例将上升到50%以上,其最终目标是建设氨气发电厂,作为新的低碳电力结构的一部分 | |
欧洲 | 2020年11月 | 在欧盟第四次氢能网络会议上提出要不断增加绿氨的生产 |
韩国 | 2020年12月 | 韩国产业通商资源部主持召开“第二次氢气和氨气发电推进”会议,韩政府宣布将2022年作为氢气-氨气发电元年,并制定发展计划和路线图,力求打造全球第一大氢气和氨气发电国。会议宣布,政府将投入400亿韩元用于有关基础设施的建设,并于2023年前制定“氢气和氨气发电指南” |
2021年11月 | 韩国能源部表示,韩国计划到2027年完成将氨作为无碳发电燃料的研究和测试,从2030年开始实现氨燃料发电商业化,并将氨的比例提高到3.6%,以减少其在电力生产中对煤炭和液化天然气的依赖。 | |
— | 正在实施通过绿氨代替火电煤炭战略,三家韩国企业联合签署“碳中和的绿色氨组织”工作协议,计划全面开发“绿色氨生产-运输-提取-利用”的全周期技术,为“绿色氨”技术开发聚力 | |
澳大利亚 | 2020年1月 | 澳大利亚氨能源协会(AEA Australia)举办第二届“氨=氢2.0会议”,提出:要加强政府与行业之间的合作关系;行业和政府共同出资设立氨生产技术研发中心;与日本和新加坡等国家建立绿氨有关的能源安全合作 |
— | 将“亚洲可再生能源中心(AREH)”列为重要项目,将利用西澳地区的太阳能和风能等资源完成年产5千万吨绿氨 | |
阿联酋 | — | 利用自身在太阳能等清洁能源领域的优势大力发展绿氨产业,以全面推进能源改革进程,加速能源产业脱碳 |
表2 国外主要国家或地区氨能政策和应用案例[55-56]
国家或地区 | 时间 | 政策/研究案例 |
---|---|---|
日本 | 2020年底 | 公布“绿色增长战略”行动计划,氨能被重点提及 |
2021年4月 | 日本政府计划:到2050年氢气和氨气发电将占日本总能源产量的10%左右;经济产业省计划:到2030年利用氨与燃煤混烧替代日本燃煤发电站20%的煤炭供应,未来这一比例将上升到50%以上,其最终目标是建设氨气发电厂,作为新的低碳电力结构的一部分 | |
欧洲 | 2020年11月 | 在欧盟第四次氢能网络会议上提出要不断增加绿氨的生产 |
韩国 | 2020年12月 | 韩国产业通商资源部主持召开“第二次氢气和氨气发电推进”会议,韩政府宣布将2022年作为氢气-氨气发电元年,并制定发展计划和路线图,力求打造全球第一大氢气和氨气发电国。会议宣布,政府将投入400亿韩元用于有关基础设施的建设,并于2023年前制定“氢气和氨气发电指南” |
2021年11月 | 韩国能源部表示,韩国计划到2027年完成将氨作为无碳发电燃料的研究和测试,从2030年开始实现氨燃料发电商业化,并将氨的比例提高到3.6%,以减少其在电力生产中对煤炭和液化天然气的依赖。 | |
— | 正在实施通过绿氨代替火电煤炭战略,三家韩国企业联合签署“碳中和的绿色氨组织”工作协议,计划全面开发“绿色氨生产-运输-提取-利用”的全周期技术,为“绿色氨”技术开发聚力 | |
澳大利亚 | 2020年1月 | 澳大利亚氨能源协会(AEA Australia)举办第二届“氨=氢2.0会议”,提出:要加强政府与行业之间的合作关系;行业和政府共同出资设立氨生产技术研发中心;与日本和新加坡等国家建立绿氨有关的能源安全合作 |
— | 将“亚洲可再生能源中心(AREH)”列为重要项目,将利用西澳地区的太阳能和风能等资源完成年产5千万吨绿氨 | |
阿联酋 | — | 利用自身在太阳能等清洁能源领域的优势大力发展绿氨产业,以全面推进能源改革进程,加速能源产业脱碳 |
燃料/储存方式 | 压力 /MPa | 密度 /kg·m-3 | 能量密度 /GJ·m-3 | 单位体积成本 /USD·m-3 | 单位能量成本/USD·GJ-1 |
---|---|---|---|---|---|
汽油/液罐 | 0.1 | 736 | 34.4 | 1000 | 29.1 |
压缩天然气 /加压罐 | 25.0 | 188 | 10.4 | 400 | 38.3 |
液化石油气 /加压罐 | 1.4 | 388 | 19.0 | 542 | 28.5 |
甲醇/液罐 | 0.1 | 749 | 11.4 | 693 | 60.9 |
氢气/金属氢化物 | 1.4 | 25 | 3.6 | 125 | 35.2 |
氨/加压罐 | 1.0 | 603 | 13.6 | 181 | 13.3 |
氨/金属氨络合物 | 0.1 | 610 | 10.4 | 183 | 17.5 |
表3 不同燃料储存方式及成本比较[62]
燃料/储存方式 | 压力 /MPa | 密度 /kg·m-3 | 能量密度 /GJ·m-3 | 单位体积成本 /USD·m-3 | 单位能量成本/USD·GJ-1 |
---|---|---|---|---|---|
汽油/液罐 | 0.1 | 736 | 34.4 | 1000 | 29.1 |
压缩天然气 /加压罐 | 25.0 | 188 | 10.4 | 400 | 38.3 |
液化石油气 /加压罐 | 1.4 | 388 | 19.0 | 542 | 28.5 |
甲醇/液罐 | 0.1 | 749 | 11.4 | 693 | 60.9 |
氢气/金属氢化物 | 1.4 | 25 | 3.6 | 125 | 35.2 |
氨/加压罐 | 1.0 | 603 | 13.6 | 181 | 13.3 |
氨/金属氨络合物 | 0.1 | 610 | 10.4 | 183 | 17.5 |
发电路线 | 合成氨耗电 /MW | 发电效率 /% | 发电量 /MW | 以电制电系数 |
---|---|---|---|---|
热电联产 | — | 60 | 1.18 | 3 |
超临界火力发电 | 3.54 | 45 | 0.88 | 4.02 |
氨燃料电池 | — | 88 | 1.42 | 2.5 |
表4 氨燃料不同发电方案效率分析[22]
发电路线 | 合成氨耗电 /MW | 发电效率 /% | 发电量 /MW | 以电制电系数 |
---|---|---|---|---|
热电联产 | — | 60 | 1.18 | 3 |
超临界火力发电 | 3.54 | 45 | 0.88 | 4.02 |
氨燃料电池 | — | 88 | 1.42 | 2.5 |
1 | 樊大磊, 李富兵, 王宗礼, 等. 碳达峰、碳中和目标下中国能源矿产发展现状及前景展望[J]. 中国矿业, 2021, 30(6): 1-8. |
FAN Dalei, LI Fubing, WANG Zongli, et al. Development status and prospects of China’s energy and minerals under the target of carbon peak and carbon neutral[J]. China Mining Magazine, 2021, 30(6): 1-8. | |
2 | 张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66. |
ZHANG Xiliang, HUANG Xiaodan, ZHANG Da, et al. Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality[J]. Journal of Management World, 2022, 38(1): 35-66. | |
3 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
4 | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046. |
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046. | |
5 | 白雪. 可再生能源发电量占全社会用电量的 29.7%[N]. 中国经济导报, 2022-07-09(3). |
BAI Xue. Renewable energy power generation accounts for 29.7% of the whole society’s electricity consumption[N]. China Economic Herald, 2022-07-09(3). | |
6 | 顾宗勤. 节能减排是我国煤化工发展的必然选择[J]. 化学工业, 2012, 30(4): 1-4. |
GU Zongqin. Energy saving and emission control—An inevitable choice for China coal chemical industry development[J]. Chemical Industry, 2012, 30(4): 1-4. | |
7 | WESTLYE F R, IVARSSON A, SCHRAMM J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine[J]. Fuel, 2013, 111: 239-247. |
8 | 郭云鹏, 王小蕾, 文福拴, 等. 用于平抑风电功率波动的电池储能系统控制策略[J]. 电力建设, 2018, 39(6): 125-130. |
GUO Yunpeng, WANG Xiaolei, WEN Fushuan, et al. Control strategies of battery energy storage systems for mitigating fluctuations of wind power outputs[J]. Electric Power Construction, 2018, 39(6): 125-130. | |
9 | 撖奥洋, 何俊峰, 张冰, 等. 大容量电池储能电站在山东电网应用的可行性分析[J]. 山东电力技术, 2019, 46(5): 30-34. |
HAN Aoyang, HE Junfeng, ZHANG Bing, et al. Feasibility analysis of the application of large capacity battery energy storage power station in Shandong power grid[J]. Shandong Electric Power Technology, 2019, 46(5): 30-34. | |
10 | 张燕子, 欧方浩, 孙思佳, 等. 关于充电站储能系统安全设计和运行安全措施[J]. 农村电气化, 2022(3): 61-65. |
ZHANG Yanzi, Fanghao OU, SUN Sijia, et al. Safety design and operation safety measures of energy storage system of charging station[J]. Rural Electrification, 2022(3): 61-65. | |
11 | 陆志刚, 刘怡, 雷金勇, 等. 电池储能在电力系统应用和技术经济分析[C]//第十三届中国科协年会第15分会场-大规模储能技术的发展与应用研讨会论文集. 天津, 2011: 132-137. |
LU Zhigang, LIU Yi, LEI Jinyong, et al. Application and techno-economic analysis of battery energy storage in power system [C]// Proceedings of the 15th Session of the 13th Annual Conference of the China Association for Science and Technology-Development and Application of Large-scale Energy Storage Technology Seminar. Tianjin, 2011: 132-137. | |
12 | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6): 21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6): 21-32. | |
13 | 翁智敏, 朱振山, 温步瀛, 等. 高比例新能源电力系统研究综述[J]. 电器与能效管理技术, 2021(11): 1-7. |
WENG Zhimin, ZHU Zhenshan, WEN Buying, et al. Review of power system with high proportion of renewable energy[J]. Electrical & Energy Management Technology, 2021(11): 1-7. | |
14 | AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74-91. |
15 | CHEN Haisheng, CONG Thang Ngoc, YANG Wei, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. |
16 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36 (5): 434-443. | |
17 | 丛晶, 宋坤, 鲁海威, 等. 新能源电力系统中的储能技术研究综述[J]. 电工电能新技术, 2014, 33(3): 53-59. |
CONG Jing, SONG Kun, LU Haiwei, et al. Review of energy storage technology for new energy power system[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3): 53-59. | |
18 | 李翠萍, 闫佳琪, 孙大朋, 等. 配电网中储能参与多场景的多维经济性评估[J]. 全球能源互联网, 2022, 5(5): 471-479. |
LI Cuiping, YAN Jiaqi, SUN Dapeng, et al. Multi-dimensional economic evaluation of energy storage participating in multi-scenarios in distribution network[J]. Journal of Global Energy Interconnection, 2022, 5(5): 471-479. | |
19 | 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中的储能关键技术探讨[J]. 高电压技术, 2021, 47(8): 2751-2759. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Exploration of key technologies for energy storage in the cleansing transformation of energy and power[J]. High Voltage Engineering, 2021, 47(8): 2751-2759. | |
20 | 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135-142. |
JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135-142. | |
21 | 宋鹏飞, 侯建国, 王秀林. 可再生能源氢储能与氢转化利用技术及发展模式分析[J]. 天然气化工—C1化学与化工, 2022, 47(3): 26-32. |
SONG Pengfei, HOU Jianguo, WANG Xiulin. Analysis of hydrogen energy storage for renewables and hydrogen conversion technology and development model[J]. Natural Gas Chemical Industry, 2022, 47(3): 26-32. | |
22 | 王月姑, 周梅, 王兆林, 等. 以氨燃料为介质的全生命周期储能效率估算[J]. 储能科学与技术, 2018, 7(2): 301-308. |
WANG Yuegu, ZHOU Mei, WANG Zhaolin, et al. Life-cycle energy efficiency estimation of large-scale ammonia fuel energy storage system[J]. Energy Storage Science and Technology, 2018, 7(2): 301-308. | |
23 | 刘志文, 陈志刚, 孙浩. 多元复合储能在提高微电网电能质量中的应用[C]//第六届电能质量国际研讨会论文集, 2012: 448-451. |
LIU Zhiwen, CHEN Zhigang, SUN Hao. Application of multi-element composite energy storage in improving the power quality of microgrid[C]// Proceedings of the 6th International Symposium on Power Quality, 2012: 448-451. | |
24 | 胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望——提高电池安全性的材料与结构设计[J]. 储能科学与技术, 2021, 10(3): 781-799. |
HU Yingying, WU Xiangwei, WEN Zhaoyin. Progress and prospect of engineering research on energy storage sodium-sulfur battery—Material and structure design to improve battery safety[J]. Energy Storage Science and Technology, 2021, 10(3): 781-799. | |
25 | 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334. |
ZHANG Cheng, TAN Zhiheng, CHAO Huaipo. Feasibility study of hydrogen energy application in data center under the background of “double carbon”[J]. Journal of Solar Energy, 2022, 43(6): 327-334. | |
26 | 汪德良, 张纯,杨玉, 等. 基于太阳能光热发电的热化学储能体系研究进展[J]. 热力发电, 2019, 48(7): 1-9. |
WANG Deliang, ZHANG Chun, YANG Yu, et al. Research progress of thermochemical energy storage system based on solar photothermal power generation[J]. Thermal Power Generation, 2019, 48(7): 1-9. | |
27 | MATZEN M, ALHAJJI M, DEMIREL Y. Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix[J]. Energy, 2015, 93: 343-353. |
28 | RÄUCHLE K, PLASS L, WERNICKE H J, et al. Methanol for renewable energy storage and utilization[J]. Energy Technology, 2016, 4(1):193-200. |
29 | SUN Fei, GAO Jihui, YANG Yuqi, et al. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage[J]. Carbon, 2016, 109: 747-754. |
30 | LAVINE A S, LOVEGROVE K M, JORDAN J, et al. Thermochemical energy storage with ammonia: Aiming for the sunshot cost target[C]// Solarpaces: International Conference on Concentrating Solar Power & Chemical Energy Systems. AIP Publishing LLC, 2016: 050028. |
31 | 邓浩, 张宁, 冯哲圣. 大容量化学储能系统研究进展[C]//中国电子学会第十六届电子元件学术年会论文集, 2010: 115-122. |
DENG Hao, ZHANG Ning, FENG Zhesheng. Research progress of large-capacity chemical energy storage system[C]// Proceedings of the 16th Annual Conference of Electronic Components of the China Electronics Society, 2010: 115-122. | |
32 | 李岳. 基于风光储混合供电系统的输出功率控制研究[D]. 北京交通大学, 2017. |
LI Yue. Research on output power control based on wind-solar storage hybrid power supply system[D]. Beijing Jiaotong University, 2017. | |
33 | 高捷, 赵斌, 杨超, 等. 海上储能技术发展动态与前景[J]. 新能源进展, 2020, 8(2): 136-142. |
GAO Jie, ZHAO Bin, YANG Chao, et al. Development trends and prospects of offshore energy storage technology[J]. New Energy Progress, 2020, 8(2): 136-142. | |
34 | 葛稚新, 杨艳, 刘人和, 等. 储能产业与技术发展趋势及对石油公司的建议[J]. 石油科技论坛, 2020, 39(3): 67-74. |
GE Zhixin, YANG Yan, LIU Renhe, et al. Development trend of energy storage industry and technology and suggestions for oil companies[J]. Petroleum Science and Technology Forum, 2020, 39(3): 67-74. | |
35 | 徐连兵. 我国氢能源利用前景与发展战略研究[J]. 洁净煤技术, 2022, 28(9): 1-10. |
XU Lianbing. Research on China’s hydrogen energy utilization prospect and development strategy[J]. Clean Coal Technology, 2022, 28(9): 1-10. | |
36 | 王浩, 黄裕茜. 氢储能产业发展与安全[J]. 中国电力企业管理, 2022(30): 80-82. |
WANG Hao, HUANG Yuxi. Development and safety of hydrogen energy storage industry[J]. China Power Enterprise Management, 2022(30): 80-82. | |
37 | 刘红梅, 徐向亚, 张蓝溪, 等. 储氢材料的研究进展[J]. 石油化工, 2021, 50(10): 1101-1107. |
LIU Hongmei, XU Xiangya, ZHANG Lanxi, et al. Research progress of hydrogen storage materials[J]. Petrochemical Technology, 2021, 50(10): 1101-1107. | |
38 | 霍知节. “起底”稀土储氢材料[J]. 新材料产业, 2019(4): 73-79. |
HUO Zhijie. “bottom” rare earth hydrogen storage materials[J]. Advanced Materials Industry, 2019(4): 73-79. | |
39 | 王中华, 郑淞生, 姚育栋, 等. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
WANG Zhonghua, ZHENG Songsheng, YAO Yudong, et al. Research progress in hydrogen production from electro-catalytic decomposition of ammonia[J]. CIESC Journal, 2022, 73(3): 1008-1021. | |
40 | 宋鹏翔, 赵波, 杨岑玉, 等. 利用捕集CO2制燃料化学品储存可再生能源电力的能效分析与评价[J]. 储能科学与技术, 2016, 5(1): 78-84. |
SONG Pengxiang, ZHAO Bo, YANG Cenyu, et al. Energy efficiency analysis and evaluation of using CO2 capture to produce fuel chemicals to store renewable energy power[J]. Energy Storage Science and Technology, 2016, 5(1): 78-84. | |
41 | WANG Can, SUN Ruoshui, ZHANG Jiutian. Supportive technologies and roadmap for China’s carbon neutrality[J]. China Economist, 2021, 16(5): 32-70. |
42 | 郭建平, 陈萍. 多相化学合成氨研究进展[J]. 科学通报, 2019, 64(11): 1114-1128. |
GUO Jianping, CHEN Ping. Recent progress in heterogeneous ammonia synthesis[J]. Chinese Science Bulletin, 2019, 64(11): 1114-1128. | |
43 | 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491. |
ZHENG Muyun, WAN Yuchi, Ruitao LYU. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491. | |
44 | 王林. 氨:低碳航运燃料“新选择”?[N]. 中国能源报, 2020-05-18(7). |
WANG Lin. Ammonia: “New Choice” for Low-Carbon Shipping Fuel?[N]. China Energy News, 2020-05-18(7). | |
45 | 刘晓璐, 耿钰晓, 郝然, 等. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091. |
LIU Xiaolu, GENG Yuxiao, HAO Ran, et al. Current situation, challenges and prospects of electro-catalytic nitrogen reduction under environmental conditions[J]. Progress in Chemistry, 2021, 33(7): 1074-1091. | |
46 | 于多, 杨索贤, 张春涛. 双碳背景下渔业船舶替代燃料分析与展望[J]. 船舶工程, 2022, 44(3): 20-25. |
YU Duo, YANG Suoxian, ZHANG Chuntao. Analysis and prospect of alternative fuels for fishing vessels in double carbon background[J]. Ship Engineering, 2022, 44(3): 20-25. | |
47 | 王鲁丰, 钱鑫, 邓丽芳, 等. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863. |
WANG Lufeng, QIAN Xin, DENG Lifang, et al. Recent progress on catalysts about electrochemical synthesis of ammonia from nitrogen[J]. CIESC Journal, 2019, 70(8): 2854-2863. | |
48 | 仲蕊. 氨氢融合拓宽氢能应用场景[N]. 中国能源报, 2021-12-20(10). |
ZHONG Rui. Ammonia-hydrogen fusion broadens the application scenarios of hydrogen energy[N]. China Energy News, 2021-12-20 (10). | |
49 | WANG Yuegu, ZHENG Songsheng, CHEN Jing, et al. Ammonia (NH3) storage for massive PV electricity[J]. Energy Procedia, 2018, 150: 99-105. |
50 | 伍莹宏, 龙新峰, 梁平. 广东省用电需求预测与储能式热力发电展望[J]. 广东电力, 2004, 17(6): 1-5. |
WU Yinghong, LONG Xinfeng, LIANG Ping. Electricity demand forecasting and prospect of power generation with energy storage in Guangdong[J]. Guangdong Electric Power, 2004, 17(6): 1-5. | |
51 | 龙新峰, 廖葵. 氨基热化学储能反应器的热性能分析[J]. 热力发电, 2008, 37(11): 59-63. |
LONG Xinfeng, LIAO Kui. Analysis about thermal performance of ammonia-based thermochemical energy-storing reactor[J]. Thermal Power Generation, 2008, 37(11): 59-63. | |
52 | MORGAN E, MANWELL J, MCGOWAN J. Wind-powered ammonia fuel production for remote Islands: A case study[J]. Renewable Energy, 2014, 72: 51-61. |
53 | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
WANG Zhen, YAN Ting, HUO Yingjie. Performance of thermochemical sorption heat storage using manganese chloride/ammonia[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4425-4431. | |
54 | 贺德敬, 陈增勋. “小舢板”变身“航母群”[N]. 濮阳日报, 2022-06-13(1). |
HE Dejing, CHEN Zengxun. “Sampan” transformed into “aircraft carrier group”[N]. Puyang Daily, 2022-06-13(1). | |
55 | 邹春蕾. 氨氢融合助绿色能源深度开发[N]. 中国电力报, 2022-03-07(5). |
ZOU Chunlei. Ammonia-hydrogen fusion helps the deep development of green energy[N]. China Electric Power News, 2022-03-07(5). | |
56 | 王俊鹏. 阿联酋聚焦蓝绿氨[N]. 经济日报, 2021-07-13(4). |
WANG Junpeng. The UAE focuses on blue-green ammonia[N]. Economic Daily, 2021-07-13(4). | |
57 | 张国长. 吴忠: 打造“中国氨氢谷”助力绿色能源转型[N]. 宁夏日报, 2022-10-31(3). |
ZHANG Guochang. Wu Zhong: Building “China’s Ammonia Hydrogen Valley” to support green energy transformation[N]. Ningxia Daily, 2022-10-31(3). | |
58 | 于瑶, 苏醒. 以氢降碳我国氢能进入加速发展窗口期[N]. 经济参考报, 2021-09-15(8). |
YU Yao, SU Xing. Using hydrogen to reduce carbon dioxide, my country’s hydrogen energy has entered a window of accelerated development[N]. Economic Information Daily, 2021-09-15(8). | |
59 | 许焕焕, 葛一, 李强, 等. 氨燃料及应用技术研究进展[J]. 东北电力大学学报, 2022, 42(2): 1-13. |
XU Huanhuan, GE Yi, LI Qiang, et al. Research progress of ammonia fuel and application technology[J]. Journal of Northeast Electric Power University, 2022, 42(2): 1-13. | |
60 | 顾长明, 潘俊明. 港口液氨装卸储存作业安全技术[J]. 广东化工, 2019, 46(18): 79-80. |
GU Changming, PAN Junming. Safety technology of liquid ammonia unloading and storage in port chemical terminal[J]. Guangdong Chemical Industry, 2019, 46(18): 79-80. | |
61 | DUIJM N, MARKERT F, PAULSEN J L. Safety assessment of ammonia as a transport fuel[J]. Chinese Journal of Industrial Medicine, 2009. |
62 | ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
63 | 仝晓波. “固态氨”技术有望脱颖而出[N]. 中国能源报, 2016-11-21(2). |
TONG Xiaobo. “Solid ammonia” technology is expected to emerge[N]. China Energy News, 2016-11-21(2). | |
64 | HUMMELSHØJ J S, Zink SØRENSEN R, KUSTOVA M Y, et al. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2 [J]. Journal of the American Chemical Society, 2006, 128(1): 16-17. |
65 | CHRISTENSEN C H, SORENSEN R Z, JOHANNESSEN T, et al. Metal ammine complexes for hydrogen storage[J]. Journal of Materials Chemistry, 2002, 15(38): 4106-4108. |
66 | FENG Tan, Lin LYU. The characteristics of ammonia storage and the development of model-based control for diesel engine urea-SCR system[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 97-109. |
67 | BIALY A, JENSEN P B, BLANCHARD D, et al. Solid solution Barium-strontium chlorides with tunable ammonia desorption properties and superior storage capacity[J]. Journal of Solid State Chemistry, 2015, 221: 32-36. |
68 | 陈瑞坚. 低浓度氨水分离提纯制备高浓氨的方法: CN103112871A[P]. 2013-05-22. |
CHEN Ruijian. Method for preparing high-concentration ammonia by separating and purifying low-concentration aqueous ammonia: CN103112871A[P]. 2013-05-22. | |
69 | AN Shaorong, JIN Qiang. Significant removal of ammonia nitrogen in low concentration from aqueous solution at low pH by advanced air stripping[J]. Environmental Science and Pollution Research, 2021, 28(26): 35113-35125. |
70 | 马双忱, 陈公达, 马宵颖, 等. 氨法碳捕集过程中氨逃逸控制[J]. 化工学报, 2014, 65(10): 4086-4093. |
MA Shuangchen, CHEN Gongda, MA Xiaoying, et al. Ammonia escape control in carbon dioxide capture using ammonia method[J]. CIESC Journal, 2014, 65(10): 4086-4093. | |
71 | 马双忱, 陈公达, 温佳琪, 等. 氨法脱碳过程中氨逃逸规律及其抑制[J]. 化工学报, 2016, 67(5): 2064-2069. |
MA Shuangchen, CHEN Gongda, WEN Jiaqi, et al. Ammonia escape and its prevention in CO2 absorption process using ammonia solution[J]. CIESC Journal, 2016, 67(5): 2064-2069. | |
72 | 曹雅丽. 以新能源为主体的新型电力系统亟待构建[N]. 中国工业报, 2022-07-13(1). |
CAO Yali. A new power system with new energy as the main body needs to be constructed urgently[N]. China Industry News, 2022-07-13(1). | |
73 | 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. |
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. | |
74 | 谭忠富, 李云峰. 碳中和目标下以新能源为主体的新型电力系统体系构建[J]. 中国电力企业管理, 2021(34): 52-53. |
TAN Zhongfu, LI Yunfeng. Construction of a new power system system with new energy as the main body under the goal of carbon neutrality[J]. China Power Enterprise Management, 2021(34): 52-53. | |
75 | 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99. |
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China’s new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99. | |
76 | 周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望——试论三代电网[J]. 中国电机工程学报, 2013, 33(22): 1-11. |
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang. Review and prospect for power system development and related technologies: A concept of three-generation power systems[J]. Proceedings of the CSEE, 2013, 33(22): 1-11. | |
77 | 夏晨益, 蔡青松, 吴杰. 基于PoA联盟链的微电网无报价交易机制[J]. 计算机系统应用, 2020, 29(11): 57-65. |
XIA Chenyi, CAI Qingsong, WU Jie. Microgrid no-bidding trading mechanism based on PoA consortium blockchain[J]. Computer Systems & Applications, 2020, 29(11): 57-65. | |
78 | 国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究[R/OL]. [2015-04-20].. |
Energy Research Institute of the National Development and Reform Commission. China’s 2050 high-proportion renewable energy development scenario and path research[R/OL]. [2015-04-20].. | |
79 | 牛涛, 张文振, 刘欣, 等. 燃煤锅炉氨煤混合燃烧工业尺度试验研究[J]. 洁净煤技术, 2022, 28(3): 193-200. |
NIU Tao, ZHANG Wenzhen, LIU Xin, et al. Industrial-scale experimental investigation of ammonia-coal cofiring in coal-fired boilers[J]. Clean Coal Technology, 2022, 28(3): 193-200. | |
80 | 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420. |
ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420. | |
81 | 杨歌. “十四五”时期我国可再生能源发电量增量占比将超过 50%[N]. 机电商报, 2022-07-11(A06). |
YANG Ge. During the “Fourteenth Five-Year Plan” period, China’s renewable energy power generation increment will account for more than 50%[N] Electromechanical Business News, 2022-07-11(A06). | |
82 | 马龙飞, 吴耀武, 梁彦杰, 等. 计及火电机组灵活性改造的电源扩展弱鲁棒规划[J]. 电力系统自动化, 2020, 44(11): 102-110. |
MA Longfei, WU Yaowu, LIANG Yanjie, et al. Light robust planning for generation expansion considering flexibility reformation of thermal power unit[J]. Automation of Electric Power Systems, 2020, 44(11): 102-110. | |
83 | 杨学伟. 楚雄风光水互补协调运行及新能源建设运行管理初探[J]. 水电站机电技术, 2016, 39(8): 4-9. |
YANG Xuewei. Preliminary study on coordinated operation of wind, light and water and operation management of new energy construction in Chuxiong[J]. Mechanical & Electrical Technique of Hydropower Station, 2016, 39(8): 4-9. | |
84 | 李献梅. 激励冷热电联供系统参与需求侧管理的峰谷定价研究[D]. 长沙: 长沙理工大学, 2015. |
LI Xianmei. Research on pricing of peak-valley for motivating CCHP to participate in demand-side management[D]. Changsha: Changsha University of Science & Technology, 2015. | |
85 | 邢洁, 曹哲, 张怡, 等. 储能系统应用于用户侧的技术经济分析[J]. 电气应用, 2017, 36(1): 26-30. |
XING Jie, CAO Zhe, ZHANG Yi, et al. Technical and economic analysis of energy storage system applied to user side[J]. Electrotechnical Application, 2017, 36(1): 26-30. | |
86 | 郝学殷, 徐荣琦, 吕涵, 等. 氨燃料电池用于电力应急发电工作的前景探讨[J]. 电力科学与工程, 2020, 36(8): 63-71. |
HAO Xueyin, XU Rongqi, Han LYU, et al. Discussion on the feasibility of ammonia fuel cell used in emergency power generation[J]. Electric Power Science and Engineering, 2020, 36(8): 63-71. | |
87 | 徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220. |
XU Yeming, ZHENG Chuanming, ZHANG Yunhong. Application prospect of ammonia energy as clean energy[J]. Chemical Bulletin, 2019, 82(3): 214-220. | |
88 | GNNADI F, MICHAEL L, KARICHEV R Z, et al. Process for the thermal decomposition of ammonia and reactor for carrying out said process: US10450192(B2)[P]. 2019-10-22. |
89 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
90 | 郑伟立, 何茹玥, 李垣彤, 等. 基于“套利”视角的储能产业商业逻辑研究[J]. 发展研究, 2021, 38(4): 18-24. |
ZHENG Weili, HE Ruyue, LI Yuantong, et al. Research on business logic of energy storage industry from the perspective of arbitrage[J]. Development Research, 2021, 38(4): 18-24. | |
91 | 李宝荣, 宁永淼, 向三明, 等. 催化氧化法处理含氨工业废气的应用探索[J]. 化工环保, 2016, 36(4): 449-453. |
LI Baorong, NING Yongmiao, XIANG Sanming, et al. Application of catalytic oxidation process in treatment of ammonia-containing industrial waste gas[J]. Environmental Protection of Chemical Industry, 2016, 36(4): 449-453. | |
92 | ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
93 | LIN Li, TIAN Yao, SU Wenbin, et al. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: Hybrid hydrogen purification with both high H2 purity and high recovery[J]. Sustainable Energy & Fuels, 2020, 4(6): 3006-3017. |
94 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
95 | VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: From synthesis to economics[J]. Energy & Fuels, 2021, 35(9): 6964-7029. |
96 | HERBINET O, BARTOCCI P, GRINBERG DANA A. On the use of ammonia as a fuel-A perspective[J]. Fuel Communications, 2022, 11: 100064. |
97 | 能源转型委员会. 中国2050: 一个全面实现现代化国家的零碳景图[R]. 北京: 能源转型委员会, 2021.Energy Transition Commission China 2050: A zero-carbon picture of a fully modernized country[R]. Beijing: Energy Transformation Commission, 2021. |
98 | 张静. 浅谈储能发展的今昔与未来[J]. 电器工业, 2019(1): 48-49. |
ZHANG Jing. On the past and future of energy storage development[J]. China Electrical Equipment Industry, 2019(1): 48-49. | |
99 | 李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. | |
100 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
101 | 张少华, 陈刚, 姚哲浩. 氨燃料将加速卡车运输业脱碳化进程[J]. 重型汽车, 2022(4): 44-45. |
ZHANG Shaohua, CHEN Gang, YAO Zhehao. Ammonia will accelerate the decarburization process of truck transportation industry[J]. Heavy Truck, 2022(4): 44-45. | |
102 | 翟康. 分解水制氢用钙钛矿透氧膜研究[D]. 昆明: 昆明理工大学, 2016. |
ZHAI Kang. Study on perovskite oxygen permeable membrane for hydrogen production from water decomposition[D]. Kunming: Kunming University of Science and Technology, 2016. | |
103 | 房金祥. 某除盐水站液氨的HSE管理[J]. 石油化工安全环保技术, 2017, 33(3): 5-9. |
FANG Jinxiang. HSE management of liquid ammonia in a desalted water station[J]. Petrochemical Safety and Environmental Protection Technology, 2017, 33(3): 5-9, 67. | |
104 | 付志新. 发电企业危险化学品安全管理[J]. 电力安全技术, 2021, 23(12): 11-14. |
FU Zhixin. Safety management of hazardous chemicals in power generation enterprises[J]. Electric Safety Technology, 2021, 23(12): 11-14. | |
105 | 高正平, 涂安琪, 李天新, 等. 面向零碳电力的氨燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(3): 173-184. |
GAO Zhengping, TU Anqi, LI Tianxin, et al. Recent advances on ammonia combustion technology for zero-carbon power[J]. Clean Coal Technology, 2022, 28(3): 173-184. | |
106 | LI Danyang. Talking about the sustainable development of energy economy[C]//Proceedings of 2018 3rd International Conference on Education, Management and Systems Engineering (EMSE 2018). Xiamen, 2018: 490-495. |
[1] | 郑良天, 康丽霞, 黄贤坤, 刘永忠. 适应多负载电池储能系统的拓扑结构优化重构方法[J]. 化工进展, 2022, 41(10): 5630-5636. |
[2] | 刘安仓, 陈川, 陈建忠, 陈裕忠, 朱晨亮, 江永, 鲁福身, 王双喜, 钟子宜, 宋一兵. 催化反应技术在滨海电厂的CO2资源化利用和海洋防污领域的应用[J]. 化工进展, 2021, 40(9): 5145-5155. |
[3] | 李振宇, 任文坡, 黄格省, 金羽豪, 师晓玉. 我国新能源汽车产业发展现状及思考[J]. 化工进展, 2017, 36(07): 2337-2343. |
[4] | 刘纳, 李爱魁. 全钒液流电池电堆的均一性[J]. 化工进展, 2017, 36(02): 519-524. |
[5] | 韩中合, 庞永超. 储气室热力学特性对AA-CAES性能的影响[J]. 化工进展, 2017, 36(01): 47-52. |
[6] | 庞永超, 韩中合. 压气储能系统中储气装置的性能分析与改进[J]. 化工进展, 2016, 35(S2): 75-79. |
[7] | 李振宇, 黄格省, 黄晟. 推动我国能源消费革命的途径分析[J]. 化工进展, 2016, 35(01): 1-9. |
[8] | 李振宇, 黄格省. 推动我国能源生产革命的途径分析[J]. 化工进展, 2015, 34(10): 3521-3529. |
[9] | 陈庆云,王云海. 微生物燃料电池阴极功能的研究进展[J]. 化工进展, 2013, 32(10): 2352-2360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |