化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5811-5819.DOI: 10.16085/j.issn.1000-6613.2022-0064
收稿日期:
2022-01-10
修回日期:
2022-03-14
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
杨鸿辉
作者简介:
李航(1998—),男,硕士研究生,研究方向为Fenton催化氧化。E-mail:3120303296@stu.xjtu.edu.cn。
基金资助:
LI Hang1,2(), YANG Honghui2(), SHI Bofang1, YAN Wei1
Received:
2022-01-10
Revised:
2022-03-14
Online:
2022-11-25
Published:
2022-11-28
Contact:
YANG Honghui
摘要:
非均相Fenton氧化技术作为高级氧化工艺(AOP)的一种,能够有效解决传统Fenton技术适用pH范围窄、易产生铁污泥、催化剂难回收等问题,但其反应活性受催化剂材料限制。本文介绍了近几年金属有机骨架(MOFs)及其衍生物在非均相Fenton技术中的应用成果,分析了MOFs及其衍生物比表面积大、活性位点丰富、易于结构调控等优点在改善非均相Fenton技术活性位点不足、Fe2+/Fe3+循环效率低、传质效率差等问题时所发挥的作用,综述了对MOFs进行改性设计以获得高活性催化剂的研究进展,总结了当前应用MOFs作为催化剂材料仍存在的缺陷。未来MOFs催化剂的研究应集中在高活性改性设计及商业化应用这两方面。
中图分类号:
李航, 杨鸿辉, 石博方, 延卫. MOFs及其衍生物在非均相Fenton催化中应用的研究进展[J]. 化工进展, 2022, 41(11): 5811-5819.
LI Hang, YANG Honghui, SHI Bofang, YAN Wei. Research progress on the application of MOFs and their derivatives in heterogeneous Fenton catalysis[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5811-5819.
1 | HAN Dongmei, CURRELL Matthew J, CAO Guoliang. Deep challenges for China’s war on water pollution[J]. Environmental Pollution, 2016, 218: 1222-1233. |
2 | ZENG Guangming, CHEN Ming, ZENG Zhuotong. Shale gas: surface water also at risk[J]. Nature, 2013, 499(7457): 154. |
3 | SCHWARZENBACH René P, EGLI Thomas, HOFSTETTER Thomas B, et al. Global water pollution and human health[J]. Annual Review of Environment and Resources, 2010, 35(1): 109-136. |
4 | 陶洋, 张璨, 孙永军. 非均相类Fenton技术研究进展[J]. 山东化工, 2020, 49(9): 66-68. |
TAO Yang, ZHANG Can, SUN Yongjun. Optimization of heterogeneous Fenton-like processes[J]. Shandong Chemical Industry, 2020, 49(9): 66-68. | |
5 | SPONGBERG Alison L, WITTER Jason D, ACUNA J, et al. Reconnaissance of selected PPCP compounds in Costa Rican surface waters[J]. Water Research, 2011, 45(20): 6709-6717. |
6 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Combined biological removal of methylene blue from aqueous solutions using rice straw and Phanerochaete chrysosporium [J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5247-5256. |
7 | MARTINEZ-HUITLE Carlos A, RODRIGO Manuel A, SIRES Ignasi, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. |
8 | BAO Lianjun, MARUYA Keith A, SNYDER Shane A, et al. China’s water pollution by persistent organic pollutants[J]. Environmental Pollution, 2012, 163: 100-108. |
9 | VELLINGIRI Kowsalya, PHILIP Ligy, KIM Ki Hyun. Metal-organic frameworks as media for the catalytic degradation of chemical warfare agents[J]. Coordination Chemistry Reviews, 2017, 353: 159-179. |
10 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism[J]. Journal of Colloid and Interface Science, 2018, 515: 232-239. |
11 | POJANA Giulio, GOMIERO Alessio, JONKERS Niels, et al. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon[J]. Environment International, 2007, 33(7): 929-936. |
12 | ZHOU Chengyun, LAI Cui, XU Piao, et al. In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4174-4184. |
13 | HU Chanjuan, HUANG Danlian, ZENG Guangming, et al. The combination of Fenton process and Phanerochaete chrysosporium for the removal of bisphenol A in river sediments: mechanism related to extracellular enzyme, organic acid and iron[J]. Chemical Engineering Journal, 2018, 338: 432-439. |
14 | JU Yongming, YU Yunjiang, WANG Xiaoyan, et al. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (Ⅳ): new insights into visible light photo-Fenton-like process with optimum dosage of H2O2 and RhB photosensitizers[J]. Journal of Hazardous Materials, 2017, 323: 611-620. |
15 | KHAN Javed Ali, HE Xuexiang, KHAN Hasan M, et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O8 2-/Fe2+ and UV/HSO5 -/Fe2+ processes: a comparative study[J]. Chemical Engineering Journal, 2013, 218: 376-383. |
16 | GENG Nannan, CHEN Wei, XU Hang, et al. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: efficiency, kinetics and mechanism[J]. Ultrasonics Sonochemistry, 2021, 72: 105411. |
17 | MAROUDAS Antonis, PANDIS Pavlos K, CHATZOPOULOU Anastasia, et al. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-Fenton reaction[J]. Ultrasonics Sonochemistry, 2021, 71: 105367. |
18 | 张森, 郑莹, 韩仕强, 等. 低频超声驱动BaTiO3压电-芬顿体系降解水中卡马西平[J]. 净水技术, 2020, 39(7): 130-138. |
ZHANG Sen, ZHENG Ying, HAN Shiqiang, et al. Degradation of carbamazepine in water by piezo-Fenton process based on BaTiO3 driven with low frequency ultrasound[J]. Water Purification Technology, 2020, 39(7): 130-138. | |
19 | REN Gengbo, ZHOU Minghua, LIU Mengmeng, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. |
20 | DAVARNEJAD Reza, AZIZI Jamal. Alcoholic wastewater treatment using electro-Fenton technique modified by Fe2O3 nanoparticles[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2342-2349. |
21 | LE Thi Xuan Huong, BECHELANY Mikhael, LACOUR Stella, et al. High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode[J]. Carbon, 2015, 94: 1003-1011. |
22 | GULKAYA Ipek, SURUCU Gulerman A, DILEK Filiz B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater[J]. Journal of Hazardous Materials, 2006, 136(3): 763-769. |
23 | KLAMERTH N, MALATO S, AGÜERA A, et al. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison[J]. Water Research, 2013, 47(2): 833-840. |
24 | MIRZAEI Amir, CHEN Zhi, HAGHIGHAT Fariborz, et al. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review[J]. Chemosphere, 2017, 174: 665-688. |
25 | ZHANG Xinyue, DING Yaobin, TANG Heqing, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236: 251-262. |
26 | MUNOZ Macarena, DE PEDRO Zahara M, CASAS Jose A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—A review[J]. Applied Catalysis B: Environmental, 2015, 176/177: 249-265. |
27 | LU Sen, LIU Libing, DEMISSIE Hailu, et al. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: a review[J]. Environment International, 2021, 146: 106273. |
28 | ZHENG Haoquan, ZHANG Yuning, LIU Leifeng, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J]. Journal of the American Chemical Society, 2016, 138(3): 962-968. |
29 | YUAN Shuai, SUN Xing, PANG Jiandong, et al. PCN-250 under pressure: sequential phase transformation and the implications for MOF densification[J]. Joule, 2017, 1(4): 806-815. |
30 | LIU Yang, LIU Gongping, ZHANG Chen, et al. Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations[J]. Advanced Science, 2018, 5(9): 1800982. |
31 | HOU Chunchao, XU Qiang. Metal-organic frameworks for energy[J]. Advanced Energy Materials, 2019, 9(23): 1801307. |
32 | DU Miao, LI Chengpeng, LIU Chunsen, et al. Design and construction of coordination polymers with mixed-ligand synthetic strategy[J]. Coordination Chemistry Reviews, 2013, 257(7/8): 1282-1305. |
33 | YIN Zheng, WAN Shuang, YANG Jian, et al. Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512. |
34 | YAGHI O M, LI Hailian. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
35 | CORMA A, GARCÍA H, XAMENA F X Llabrés I. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chemical Reviews, 2010, 110(8): 4606-4655. |
36 | HAQUE Enamul, Jong Won JUN, JHUNG Sung Hwa. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235)[J]. Journal of Hazardous Materials, 2011, 185(1): 507-511. |
37 | LI Yuanyuan, JIANG Jun, FANG Yu, et al. TiO2 nanoparticles anchored onto the metal-organic framework NH2-MIL-88B(Fe) as an adsorptive photocatalyst with enhanced Fenton-like degradation of organic pollutants under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16186-16197. |
38 | MEEK Scott T, GREATHOUSE Jeffery A, ALLENDORF Mark D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials[J]. Advanced Materials, 2011, 23(2): 249-267. |
39 | ZHOU Yinxi, SONG Jinliang, LIANG Shuguang, et al. Metal-organic frameworks as an acid catalyst for the synthesis of ethyl methyl carbonate via transesterification[J]. Journal of Molecular Catalysis A: Chemical, 2009, 308(1/2): 68-72. |
40 | MURRAY Leslie J, DINCA Mircea, LONG Jeffrey R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1294-1314. |
41 | DHAKSHINAMOORTHY Amarajothi, ASIRI Abdullah M, GARCIA Hermenegildo. Catalysis by metal-organic frameworks in water[J]. Chemical Communications, 2014, 50(85): 12800-12814. |
42 | LIANG He, LIU Ruiping, HU Chengzhi, et al. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation[J]. Journal of Hazardous Materials, 2021, 406: 124692. |
43 | GAO Cong, CHEN Shuo, QUAN Xie, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis, 2017, 356: 125-132. |
44 | MA Mingyan, NOEI Heshmat, MIENERT Bernd, et al. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2013, 19(21): 6785-6790. |
45 | HORCAJADA Patricia, SALLES Fabrice, WUTTKE Stefan, et al. How linker’s modification controls swelling properties of highly flexible iron(Ⅲ) dicarboxylates MIL-88[J]. Journal of the American Chemical Society, 2011, 133(44): 17839-17847. |
46 | VERMOORTELE Frederik, AMELOOT Rob, ALAERTS Luc, et al. Tuning the catalytic performance of metal-organic frameworks in fine chemistry by active site engineering[J]. Journal of Materials Chemistry, 2012, 22(20): 10313-10321. |
47 | LI Yue, LIU Huan, LI Wenjuan, et al. A nanoscale Fe(Ⅱ) metal-organic framework with a bipyridinedicarboxylate ligand as a high performance heterogeneous Fenton catalyst[J]. RSC Advances, 2016, 6(8): 6756-6760. |
48 | LI Xuning, WANG Zhaohui, ZHANG Bo, et al. Fe x Co3- x O4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2016, 181: 788-799. |
49 | WANG Chongchen, LI Jianrong, Xiuliang LYU, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014, 7(9): 2831-2867. |
50 | DHAKSHINAMOORTHY Amarajothi, ASIRI Abdullah M, GARCIA Hermenegildo. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis[J]. ACS Catalysis, 2017, 7(4): 2896-2919. |
51 | DHAKSHINAMOORTHY Amarajothi, ASIRI Abdullah M, Hermenegildo GARCÍA. Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition, 2016, 55(18): 5414-5445. |
52 | WANG Jinliang, WANG Cheng, LIN Wenbin. Metal-organic frameworks for light harvesting and photocatalysis[J]. ACS Catalysis, 2012, 2(12): 2630-2640. |
53 | WANG Dengke, HUANG Renkun, LIU Wenjun, et al. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis, 2014, 4(12): 4254-4260. |
54 | WANG Qibao, JING Ziyan, HU Xiangming, et al. Synthesis, structure, and heterogeneous Fenton reaction of new Cu(Ⅱ)-based discrete Cu2L x coordination complexes[J]. CrystEngComm, 2021, 23(1): 216-220. |
55 | HANG Jing, YI Xiaohong, WANG Chongchen, et al. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe)[J]. Journal of Hazardous Materials, 2022, 424: 127415. |
56 | DREYER Daniel R, PARK Sungjin, BIELAWSKI Christopher W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. |
57 | PETIT Camille, BANDOSZ Teresa J. MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks[J]. Advanced Materials, 2009, 21(46): 4753-4757. |
58 | ZHANG Yang, LI Gang, LU Hong, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4(15): 7594-7600. |
59 | JAHAN Maryam, BAO Qiaoliang, YANG Jiaxiang, et al. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire[J]. Journal of the American Chemical Society, 2010, 132(41): 14487-14495. |
60 | ROSTAMNIA Sadegh, ALAMGHOLILOO Hassan, LIU Xiao. Pd-grafted open metal site copper-benzene-1, 4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling[J]. Journal of Colloid and Interface Science, 2016, 469: 310-317. |
61 | LU Xuefeng, GU Linfei, WANG Jiawei, et al. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction[J]. Advanced Materials, 2017, 29(3): 1604437. |
62 | PAN Yue, JIANG Songshan, XIONG Wei, et al. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater[J]. Microporous and Mesoporous Materials, 2020, 291: 109703. |
63 | LI Wenhui, WU Xiaofeng, LI Shuangde, et al. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst[J]. Applied Surface Science, 2018, 436: 252-262. |
64 | NIU Hongyun, ZHENG Yang, WANG Saihua, et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks[J]. Journal of Hazardous Materials, 2018, 346: 174-183. |
65 | WU Qiangshun, YANG Hanpei, KANG Li, et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: acceleration of Fe(Ⅱ)/Fe(Ⅲ) cycle under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020, 263: 118282. |
66 | PENG Jianbiao, XUE Jie, LI Jianhua, et al. Catalytic effect of low concentration carboxylated multi-walled carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system[J]. Chemical Engineering Journal, 2017, 321: 325-334. |
67 | YANG Zhichao, YU Anqing, SHAN Chao, et al. Enhanced Fe(Ⅲ)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes[J]. Water Research, 2018, 137: 37-46. |
68 | ZHANG Hang, CHEN Shuo, ZHANG Haiguang, et al. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Frontiers of Environmental Science & Engineering, 2019, 13(2): 1-11. |
69 | GAO Cong, SU Yan, QUAN Xie, et al. Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(Ⅲ)/Fe(Ⅱ) redox cycle for highly efficient Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2020, 276: 119016. |
70 | GONG Qingjiao, LIU Yun, DANG Zhi. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light[J]. Journal of Hazardous Materials, 2019, 371: 677-686. |
71 | TANG Juntao, WANG Jianlong. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation[J]. Chemical Engineering Journal, 2019, 375: 122007. |
72 | ZHANG Yuwei, LIU Fei, YANG Zhichao, et al. Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction[J]. Nano Research, 2021, 14(7): 2383-2389. |
73 | LI Baojun, CAO Huaqiang. ZnO@graphene composite with enhanced performance for the removal of dye from water[J]. Journal of Materials Chemistry, 2011, 21(10): 3346-3349. |
74 | MA Huijing, YU Bing, WANG Qingping, et al. Enhanced removal of pefloxacin from aqueous solution by adsorption and Fenton-like oxidation using NH2-MIL-88B[J]. Journal of Colloid and Interface Science, 2021, 583: 279-287. |
75 | YIN Na, WANG Ke, XIA Yi’an, et al. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (Ⅱ)[J]. Desalination, 2018, 430: 120-127. |
76 | JIANG Yuanyuan, NI Pengjuan, CHEN Chuanxia, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): 1801909. |
77 | ZHANG Danyu, LIU Tongcai, YIN Kai, et al. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics[J]. Chemical Engineering Journal, 2020, 383: 123184. |
78 | TANG Juntao, WANG Jianlong. Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange[J]. RSC Advances, 2017, 7(80): 50829-50837. |
79 | WU Yan, LUO Hanjin, WANG Hou. Synthesis of iron(Ⅲ)-based metal-organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation[J]. RSC Advances, 2014, 4(76): 40435-40438. |
80 | ANGAMUTHU M, SATISHKUMAR G, LANDAU M V. Precisely controlled encapsulation of Fe3O4 nanoparticles in mesoporous carbon nanodisk using iron based MOF precursor for effective dye removal[J]. Microporous and Mesoporous Materials, 2017, 251: 58-68. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[3] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[4] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[5] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[8] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[9] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[10] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[11] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[12] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[13] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[14] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[15] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |