化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5800-5810.DOI: 10.16085/j.issn.1000-6613.2022-0029
收稿日期:
2022-01-05
修回日期:
2022-03-31
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
陈玉彬
作者简介:
郑学文(1997—),男,硕士研究生,研究方向为可再生能源转化与利用。E-mail:alliance@stu.xjtu.edu.cn。
基金资助:
ZHENG Xuewen(), ZHAO Rui, WU Jiazhe, WANG Menglong, CHEN Yubin()
Received:
2022-01-05
Revised:
2022-03-31
Online:
2022-11-25
Published:
2022-11-28
Contact:
CHEN Yubin
摘要:
电解海水是一种可再生、可持续、低成本且节约淡水资源的氢气生产方案。因此,针对天然海水或盐水电解质的析氢反应(HER)和析氧反应(OER),设计开发高效、稳定的电催化剂具有良好的应用前景。为了深入了解海水电解所面临的现状和挑战,本文对电催化分解海水催化剂的设计思路与改性方法进行了系统的回顾和总结。首先详细讨论了电解海水中析氢反应、析氧反应、析氯反应的基本原理。随后对最近报道的在海水中能够稳定运行的HER和OER电催化剂进行了汇总和分析。针对阴极催化剂,分别概述了高效贵金属基电催化剂和低成本过渡金属基电催化剂。针对阳极催化剂,主要讨论了取得较大进展的镍基催化剂,随后对镍基之外的其他电催化剂进行对比补充。文章最后对电解海水催化剂目前所面临的挑战和发展方向进行了总结和展望,基于现有分析认为,在未来的研究中需要进一步探索新型电解海水催化剂的种类和结构,开发更高效稳定的阴极和具有更高OER选择性的阳极电催化剂,以满足分解海水电催化剂工业化应用的要求。
中图分类号:
郑学文, 赵蕊, 吴家哲, 王朦胧, 陈玉彬. 电解海水催化剂的设计与改性[J]. 化工进展, 2022, 41(11): 5800-5810.
ZHENG Xuewen, ZHAO Rui, WU Jiazhe, WANG Menglong, CHEN Yubin. Design and modification of electrocatalysts for seawater splitting: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5800-5810.
1 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
2 | BOUDRIES R. Analysis of solar hydrogen production in Algeria: case of an electrolyzer-concentrating photovoltaic system[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11507-11518. |
3 | 周旭华, 吴斌. 大气、陆地水储量和海水质量分布变化与地球低阶引力场球谐系数的关系[J]. 天文学报, 2002, 43(3): 327-332. |
ZHOU Xuhua, WU Bin. Changes of atmosphere, continental water and oceanic mass distribution in relation with low degree harmonic coefficients in the earth’s gravitational field[J]. Acta Astronomica Sinica, 2002, 43(3): 327-332. | |
4 | URBAN Jeffrey J. Emerging scientific and engineering opportunities within the water-energy nexus[J]. Joule, 2017, 1(4): 665-688. |
5 | DIONIGI Fabio, REIER Tobias, PAWOLEK Zarina, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972. |
6 | HSU Shao Hui, MIAO Jianwei, ZHANG Liping, et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency[J]. Advanced Materials, 2018, 30(18): e1707261. |
7 | 陶乃旺, 曾登峰, 王佳妮. 电解海水对环氧涂层防腐蚀性能的影响研究[J]. 材料开发与应用, 2021, 36(5): 38-44. |
TAO Naiwang, ZENG Dengfeng, WANG Jiani. Research on effects of electrolytic sea water on anticorrosive performance of epoxy coatings[J]. Development and Application of Materials, 2021, 36(5): 38-44. | |
8 | BENNETT J E. Electrodes for generation of hydrogen and oxygen from seawater[J]. International Journal of Hydrogen Energy, 1980, 5(4): 401-408. |
9 | LU Xunyu, PAN Jian, LOVELL Emma, et al. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J]. Energy & Environmental Science, 2018, 11(7): 1898-1910. |
10 | ZHENG Jingjing. Pt-free NiCo electrocatalysts for oxygen evolution by seawater splitting[J]. Electrochimica Acta, 2017, 247: 381-391. |
11 | JAMESH Mohammed Ibrahim. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Power Sources, 2016, 333: 213-236. |
12 | 王辉. 碳耦合镍铁基电极的制备及海水电解性能研究[D]. 大连: 大连理工大学, 2021. |
WANG Hui. Preparation of carbon coupled nickel-iron based electrodes and performance for seawater electrolysis performance[D]. Dalian: Dalian University of Technology, 2021. | |
13 | LI Xialiang, LEI Haitao, LIU Jieyu, et al. Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0—14 solutions[J]. Angewandte Chemie International Edition, 2018, 57(46): 15070-15075. |
14 | GAO Zhong, QI Jing, CHEN Mingxing, et al. An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution[J]. Electrochimica Acta, 2017, 224: 412-418. |
15 | WANG Zhiyuan, YANG Jia, WANG Wenyu, et al. Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting[J]. Science China Materials, 2021, 64(4): 861-869. |
16 | SALEH Tawfik A, SHETTI Nagaraj P, SHANBHAG Mahesh M, et al. Recent trends in functionalized nanoparticles loaded polymeric composites: an energy application[J]. Materials Science for Energy Technologies, 2020, 3: 515-525. |
17 | XIE Junfeng, YANG Xueying, XIE Yi. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution[J]. Nanoscale, 2020, 12(7): 4283-4294. |
18 | XIE Junfeng, GUO Yanqing, LOU Shanshan, et al. A molten-salt protected pyrolysis approach for fabricating a ternary nickel-cobalt-iron oxide nanomesh catalyst with promoted oxygen-evolving performance[J]. Chemical Communications, 2020, 56(33): 4579-4582. |
19 | 涂青青. 层状双金属氢氧化物的结构调控与电解水析氧性能及催化机理研究[D]. 济南: 济南大学, 2021. |
TU Qingqing. Adjustment and control of structure of layered double hydroxide and its catalytic mechanism for oxygen evolution reaction[D]. Jinan: University of Jinan, 2021. | |
20 | XIE Junfeng, CAO Shanshan, GAO Li, et al. Modified bluing treatment to produce nickel-cobalt-iron spinel oxide with promoted oxygen-evolving performance[J]. Chemical Communications, 2019, 55(66): 9841-9844. |
21 | ROSSMEISL J, GREELEY J, KARLBERG G S, et al. Fuel cell catalysis: a surface science approach[M]. Hoboken: Wiley-VCH, 2009. |
22 | KOPER M T M, HEERING H A, WIECKOWSKI A, et al. Fuel cell science: theory, fundamentals, and bio-catalysis[M]. New York: Wiley-VCH, 2010. |
23 | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
24 | ZENG Zhenhua, CHANG Kee Chul, KUBAL Joseph, et al. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion[J]. Nature Energy, 2017, 2: 17070. |
25 | VINCENT Immanuel, BESSARABOV Dmitri. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
26 | BUTTLER Alexander, SPLIETHOFF Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
27 | CARMO Marcelo, FRITZ David L, Jürgen MERGEL, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
28 | GODULA A, GUILLET N, MILLET P, et al. Hydrogen production: by electrolysis. Chapter 4-alkaline water electrolysis[M]. Verlag: wiley-VCH, 2015. |
29 | 王思, 马嘉苓, 陈利芳, 等. 双金属氢氧化物催化析氧反应的协同机制研究[J]. 化学学报, 2021, 79(2): 216-222. |
WANG Si, MA Jialing, CHEN Lifang, et al. Role of synergistic effect in oxygen evolution reaction over layered double hydroxide[J]. Acta Chimica Sinica, 2021, 79(2): 216-222. | |
30 | LEWIS Nathan S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces[J]. The Journal of Physical Chemistry B, 1998, 102(25): 4843-4855. |
31 | KOPER Marc T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chemical Science, 2013, 4(7): 2710. |
32 | ZHU Qian, DUAN Ran, JI Hongwei, et al. Interfacial proton-coupled electron transfer in metal oxide semiconductor photocatalysis[J]. Research on Chemical Intermediates, 2017, 43(9): 4997-5009. |
33 | SOLIS Brian H, Sharon HAMMES-SCHIFFER. Proton-coupled electron transfer in molecular electrocatalysis: theoretical methods and design principles[J]. Inorganic Chemistry, 2014, 53(13): 6427-6443. |
34 | MAYER James M, RHILE Ian J. Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs. concerted pathways[J]. Biochimica et Biophysica Acta, 2004, 1655: 51-58. |
35 | MAO Yu, CHEN Jianfu, WANG Haifeng, et al. Catalyst screening: refinement of the origin of the volcano curve and its implication in heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2015, 36(9): 1596-1605. |
36 | CHAUHAN Meenakshi, REDDY Kasala Prabhakar, GOPINATH Chinnakonda S, et al. Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(9): 5871-5879. |
37 | ROSSMEISL J, QU Z W, ZHU H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1/2): 83-89. |
38 | HANSEN Heine A, MAN Isabela C, STUDT Felix, et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces[J]. Physical Chemistry Chemical Physics, 2010, 12(1): 283-290. |
39 | Iman SOHRABNEJAD-ESKAN, GORYACHEV Andrey, EXNER Kai S, et al. Temperature-dependent kinetic studies of the chlorine evolution reaction over RuO2(110) model electrodes[J]. ACS Catalysis, 2017, 7(4): 2403-2411. |
40 | PETER Laurence. Surface electrochemistry. A molecular level approach[J]. Electrochimica Acta, 1995, 40(5): 653. |
41 | KARLSSON Rasmus K B, CORNELL Ann. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes[J]. Chemical Reviews, 2016, 116(5): 2982-3028. |
42 | AMIKAM Gidon, NATIV Paz, GENDEL Youri. Chlorine-free alkaline seawater electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6504-6514. |
43 | ZHANG Jiaheng, SUN Ying, MAO Chaozhu, et al. Theoretical study of pKa for perchloric acid[J]. Journal of Molecular Structure: Theochem, 2009, 906(1/2/3): 46-49. |
44 | ZHANG Yange, LI Pinjiang, YANG Xiaogang, et al. High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting[J]. Journal of Alloys and Compounds, 2018, 732: 248-256. |
45 | YU Luo, WU Libo, MCELHENNY Brian, et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J]. Energy & Environmental Science, 2020, 13(10): 3439-3446. |
46 | 申雪然, 冯彩虹, 代政, 等. 电解海水制氢的研究进展[J]. 化工新型材料, 2021, 49(12): 55-60. |
SHEN Xueran, FENG Caihong, DAI Zheng, et al. Progress on hydrogen generation by splitting seawater[J]. New Chemical Materials, 2021, 49(12): 55-60. | |
47 | ZHENG Jingjing. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNi x electrocatalysts[J]. Applied Surface Science, 2017, 413: 360-365. |
48 | SARNO Maria, PONTICORVO Eleonora, SCARPA Davide. Active and stable graphene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting[J]. Electrochemistry Communications, 2020, 111: 106647. |
49 | LI Hongyan, TANG Qunwei, HE Benlin, et al. Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting[J]. Journal of Materials Chemistry A, 2016, 4(17): 6513-6520. |
50 | NIU Xiaoman, TANG Qunwei, HE Benlin, et al. Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting[J]. Electrochimica Acta, 2016, 208: 180-187. |
51 | ZHOU Dan, WANG Zheng, LONG Xia, et al. One-pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution[J]. Journal of Materials Chemistry A, 2019, 7(39): 22530-22538. |
52 | LIU Yuchuan, HU Xiang, HUANG Baobing, et al. Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18835-18843. |
53 | MA Zizai, LIU Kai, WAN Zihao, et al. Engineering biphasic hybrid phosphide nanowires as efficient electrocatalyst for hydrogen evolution reaction: experimental and theoretical insights[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2926-2935. |
54 | ZHANG Yongqi, OUYANG Bo, XU Jing, et al. Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution[J]. Angewandte Chemie, 2016, 55(30): 8670-8674. |
55 | GAO Shuang, LI Guodong, LIU Yipu, et al. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons[J]. Nanoscale, 2015, 7(6): 2306-2316. |
56 | WU Xianhong, ZHOU Si, WANG Zhiyu, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Advanced Energy Materials, 2019, 9(34): 1901333. |
57 | JIN Haiyan, WANG Jing, SU Diefeng, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7): 2688-2694. |
58 | SUN Kaian, ZENG Lingyou, LIU Sihui, et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution[J]. Nano Energy, 2019, 58: 862-869. |
59 | BATES Michael K, JIA Qingying, RAMASWAMY Nagappan, et al. Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction[J]. The Journal of Physical Chemistry C, 2015, 119(10): 5467-5477. |
60 | Qingliang LYU, HAN Jianxin, TAN Xueling, et al. Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting[J]. ACS Applied Energy Materials, 2019, 2(5): 3910-3917. |
61 | LIN Yan, SUN Kaian, LIU Shoujie, et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Advanced Energy Materials, 2019, 9(36): 1901213. |
62 | MA Yuanyuan, WU Caixia, FENG Xiaojia, et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J]. Energy & Environmental Science, 2017, 10(3): 788-798. |
63 | YU Jing, TIAN Yumeng, ZHOU Fei, et al. Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst[J]. Journal of Materials Chemistry A, 2018, 6(36): 17353-17360. |
64 | ZHOU Chenhui, ZHAO Siming, MENG Haibing, et al. RuCoO x nanofoam as a high-performance trifunctional electrocatalyst for rechargeable zinc-air batteries and water splitting[J]. Nano Letters, 2021, 21(22): 9633-9641. |
65 | KIM Jaemin, YIN Xi, TSAO Kai Chieh, et al. Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2014, 136(42): 14646-14649. |
66 | KUMARI Sudesh, TURNER WHITE R, KUMAR Bijandra, et al. Solar hydrogen production from seawater vapor electrolysis[J]. Energy & Environmental Science, 2016, 9(5): 1725-1733. |
67 | JUODKAZIS K, JUODKAZYTĖ J, VILKAUSKAITĖ R, et al. Nickel surface anodic oxidation and electrocatalysis of oxygen evolution[J]. Journal of Solid State Electrochemistry, 2008, 12(11): 1469-1479. |
68 | SAMAD Shuaiba, Kee Shyuan LOH, WONG Wai Yin, et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7823-7854. |
69 | WANG Leying, ZHANG Hao, CAO Gaoping, et al. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries[J]. Electrochimica Acta, 2015, 186: 654-663. |
70 | KUANG Yun, KENNEY Michael J, MENG Yongtao, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. PNAS, 2019, 116(14): 6624-6629. |
71 | YU Luo, ZHU Qing, SONG Shaowei, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nature Communications, 2019, 10(1): 5106. |
72 | IZUMIYA K, AKIYAMA E, HABAZAKI H, et al. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater[J]. Materials Transactions, 1997, 38(10): 899-905. |
73 | FUJIMURA K, MATSUI T, IZUMIYA K, et al. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis[J]. Materials Science and Engineering: A, 1999, 267(2): 254-259. |
74 | XIAO Zhaohui, WANG Yu, HUANG Yucheng, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy & Environmental Science, 2017, 10(12): 2563-2569. |
75 | ZHANG Zhiyan, LU Meng, WANG Jinfeng, et al. Phosphate ion functionalized Co3O4 nanosheets/RGO with improved electrochemical performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124232. |
76 | SONG Fang, SCHENK Kurt, HU Xile. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes[J]. Energy & Environmental Science, 2016, 9(2): 473-477. |
77 | KORDEK Karolina, YIN Huajie, RUTKOWSKI Piotr, et al. Cobalt-based composite films on electrochemically activated carbon cloth as high performance overall water splitting electrodes[J]. International Journal of Hydrogen Energy, 2019, 44(1): 23-33. |
78 | MCATEER David, GODWIN Ian J, LING Zheng, et al. Liquid exfoliated Co(OH)2 nanosheets as low-cost, yet high-performance, catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(15):1702965. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |