化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5272-5285.DOI: 10.16085/j.issn.1000-6613.2022-2125
王晓亮1(), 于振秋1, 常雷明1, 赵浩男1, 宋晓琦1, 高靖淞1, 张一波1, 黄传辉2, 刘忆2, 杨绍斌1
收稿日期:
2022-11-16
修回日期:
2023-04-03
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
王晓亮
作者简介:
王晓亮(1980-),男,博士,教授,研究方向为新能源材料。E-mail:ningke@163.com。
基金资助:
WANG Xiaoliang1(), YU Zhenqiu1, CHANG Leiming1, ZHAO Haonan1, SONG Xiaoqi1, GAO Jingsong1, ZHANG Yibo1, HUANG Chuanhui2, LIU Yi2, YANG Shaobin1
Received:
2022-11-16
Revised:
2023-04-03
Online:
2023-10-15
Published:
2023-11-11
Contact:
WANG Xiaoliang
摘要:
赝电容材料氢氧化物/氧化物具有高比容量的优势,可以应用在高能量密度、适中功率密度的领域。电沉积法制备氢氧化物/氧化物电极的工艺简单,元素组成、形貌、尺寸、沉积量可调控,可有效发挥材料电容性能,是很有前景的电极制备方法。但是,电沉积法制备超级电容器电极依然有一些方法、规律和影响因素没有总结厘清。本文总结了氢氧化物/氧化物电沉积机制和氢氧化物/氧化物的沉积量、微观形貌、比表面积和孔结构、电化学阻抗等因素对电极性能的影响规律和研究成果,归纳了循环伏安、恒电位、恒电流3种电沉积方法的一般规律和研究成果,分析了电沉积法制备氢氧化物/氧化物电极面临的沉积层与基底结合力不足、沉积不均匀、难以获得高性能大沉积量沉积层等问题,展望了多元复合、使用绿色添加剂和模板等未来电沉积制备电极材料的研究趋势。
中图分类号:
王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285.
WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285.
1 | 乔少明, 黄乃宝, 高正远, 等. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186. |
QIAO Shaoming, HUANG Naibao, GAO Zhengyuan, et al. Nickel-manganese binary metal oxide as electrode materials for supercapacitors[J]. Chemical Progress, 2019, 31(8): 1177-1186. | |
2 | BORENSTEIN A, HANNA O, ATTIAS R, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672. |
3 | YUAN Zhilei, YANG Yongjun, YANG Yajun, et al. Preparation and electrochemical properties of carbon/PANI composite mesh electrode materials[J]. Journal of Electronic Materials, 2022, 51(5): 2289-2297. |
4 | TOBIS M, SROKA S, FRĄCKOWIAK E. Supercapacitor with carbon/MoS2 composites[J]. Frontiers in Energy Research, 2021, 9: 647878. |
5 | ZHANG Xiang, ZHENG Yuying, ZHENG Wenqing, et al. Graphite felt decorated with porous NiCo2O4 nanosheets for high-performance pseudocapacitor electrodes[J]. Journal of Materials Science, 2017, 52(9): 5179-5187. |
6 | RAHMANIAN A, NAJI L. Systematic study of influencing parameters on the in-situ electrochemical growth of three-dimensional graphene on carbon cloth for supercapacitor applications[J]. Journal of Energy Storage, 2022, 49: 104146. |
7 | WU Xiaoyu, LI Songmei, LIU Jianhua, et al. Multiplex compounds of Ni, Cu, Co-based oxyphosphide nanowire arrays grown on Ni foam: A well-designed free-standing anode for high-capacity lithium storage[J]. Journal of Alloys and Compounds, 2019, 799: 406-414. |
8 | LIANG Jiaji, GUAN Shundong, XING Junjie, et al. Network-like FeNb2O6 nanostructures on flexible carbon cloth as a binder-free electrode for aqueous supercapacitors[J]. Journal of Alloys and Compounds, 2022, 896: 162986. |
9 | WANG Jiachen, LIU Zhiwei, ZHAO Yuhong. Alcohol hydroxides regulate the growth of Ni-Co layered double hydroxides on carbon fiber cloth as supercapacitor electrode materials[J]. Electrochimica Acta, 2022, 403: 139645. |
10 | LI Chunyan, ZHANG Gaomin, LI Xin, et al. Construction of nitrogen-doped graphene quantum dot embedded NiGa layered double hydroxide for high-performance asymmetric supercapacitors[J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110591. |
11 | ZHANG Yaxiong, LIU Ying, BAI Yunfei, et al. Boosting the electrochemical properties of carbon materials as bipolar electrodes by introducing oxygen functional groups[J]. RSC Advances, 2020, 10(58): 35295-35301. |
12 | LU Wen, YAN Lei, YE Wuquan, et al. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2022, 10(29): 15267-15296. |
13 | LIU Ruiqi, XU Shusheng, SHAO Xiaoxuan, et al. Defect-ezngineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis[J]. ACS Appl Mater Interfaces, 2021, 13(40): 47717-47727. |
14 | ZHAO Lina, ZHAO Hailei, DU Zhihong, et al. Computational and experimental understanding of Al-doped Na3V2- x Al x (PO4)3 cathode material for sodium ion batteries: Electronic structure, ion dynamics and electrochemical properties[J]. Electrochimica Acta, 2018, 282: 510-519. |
15 | MALIK S, GUL I H, BAIG M M. Hierarchical MnNiCo ternary metal oxide/graphene nanoplatelets composites as high rated electrode material for supercapacitors[J]. Ceramics International, 2021, 47(12): 17008-17014. |
16 | ZHANG Yong, MEI Hanxin, GAO Haili, et al. Metal oxide modified (NH4)(Ni,Co)PO4·0.67H2O composite as high-performance electrode materials for supercapacitors[J]. Inorganic Chemistry Communications, 2020, 112: 107696. |
17 | ARENAS-ESTEBAN D, URONES-GARROTE E, CARRETERO-GONZALEZ J, et al. Organometallic-derived carbon (ODC)-metal nano-oxide composites as improved electrode materials for supercapacitors[J]. Inorganic Chemistry, 2019, 58(14): 9175-9180. |
18 | BALAJI T E, TANAYA DAS H, MAIYALAGAN T. Recent trends in bimetallic oxides and their composites as electrode materials for supercapacitor applications[J]. ChemElectroChem, 2021, 8(10): 1723-1746. |
19 | VIDHYA M S, RAVI G, YUVAKKUMAR R, et al. Nickel-cobalt hydroxide: A positive electrode for supercapacitor applications[J]. RSC Advances, 2020, 10(33): 19410-19418. |
20 | WANG Xuan, SONG Haoyu, MA Shenglan, et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability[J]. Chemical Engineering Journal, 2022, 432: 134319. |
21 | CUEVAS A, WAN Y M, YAN D, et al. Carrier population control and surface passivation in solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 38-47. |
22 | KIM H S, COOK J B, LIN H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3- x [J]. Nature Materials, 2017, 16(4): 454-460. |
23 | WANG Yang, LAI Wenhui, WANG Ni, et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life[J]. Energy & Environmental Science, 2017, 10(4): 941-949. |
24 | SAMBASIVAM S, GOPI C V V M, ARBI H M, et al. Binder-free hierarchical core-shell-like CoMn2O4@MnS nanowire arrays on nickel foam as a battery-type electrode material for high-performance supercapacitors[J]. Journal of Energy Storage, 2021, 36: 102377. |
25 | SHEN Mao, CHEN Lei, REN Shibin, et al. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry, 2021, 891: 115272. |
26 | CHEN Chaoxian, ZHAO Chenyang, LI Cuihua, et al. Porous NiCo2O4 nanowire arrays as supercapacitor electrode materials with extremely high cycling stability[J]. Chemical Research in Chinese Universities, 2020, 36(4): 715-720. |
27 | HE Guanghua, WANG Li. Conductive Ni2P nanosheet arrays-carbon nanofibers as binder-free pseudocapacitive electrode materials[J]. Journal of Electroanalytical Chemistry, 2022, 907: 116054. |
28 | GOPI C V V M, RAMESH R, KIM H J. Designing nanosheet manganese cobaltate@manganese cobaltate nanosheet arrays as a battery-type electrode material towards high-performance supercapacitors[J]. Journal of Energy Storage, 2022, 47: 103603. |
29 | MORADLOU O, SHARIFPOUR H. Interconnected NiCo2S4-coated NiO nanosheet arrays as electrode materials for high-performance supercapacitors[J]. Journal of Energy Storage, 2020, 32: 101886. |
30 | LEI Zhendong, LIU Long, ZHAO Huaping, et al. Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors[J]. Nature Communications, 2020, 11: 299. |
31 | LIU Taiwei, ZHENG Yiwei, ZHAO Wei, et al. Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 556: 743-752. |
32 | ABOAGYE A, LIU Y Y, RYAN J G, et al. Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors[J]. Materials Chemistry and Physics, 2018, 214: 557-563. |
33 | WANG Ting, MA Tengfei, GE Tao, et al. Synthesis of MnNb2O6 with hierarchical structure as a novel electrode material for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2018, 750: 428-435. |
34 | GONG Xinyi, LUO Wanxia, GUO Nannan, et al. Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core-shell structure boosting capacitive deionization performance[J]. Journal of Materials Chemistry A, 2021, 9(34): 18604-18613. |
35 | ZHAO Yubo, LIANG Bolong, WEI Xujie, et al. A core-shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization[J]. Journal of Materials Chemistry A, 2019, 7(17): 10464-10474. |
36 | CHENG J P, WANG W D, WANG X C, et al. Recent research of core-shell structured composites with NiCo2O4 as scaffolds for electrochemical capacitors[J]. Chemical Engineering Journal, 2020, 393: 124747. |
37 | GUAN Meili, WANG Qiuwan, ZHANG Xuan, et al. Two-dimensional transition metal oxide and hydroxide-based hierarchical architectures for advanced supercapacitor materials[J]. Frontiers in Chemistry, 2020, 8: 390. |
38 | HUANG Tingting, JIANG Yuan, SHEN Guozhen, et al. Recent advances of two-dimensional nanomaterials for electrochemical capacitors[J]. ChemSusChem, 2020, 13(6): 1093-1113. |
39 | LKHAGVAA T, REHMAN Z U, CHOI Dongjin. Post-anodization methods for improved anticorrosion properties: a review[J]. Journal of Coatings Technology and Research, 2021, 18(1): 1-17. |
40 | PRASAD C, TANG Hua, LIU Qinqin, et al. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications[J]. Journal of Molecular Liquids, 2019, 289: 111114. |
41 | SHABANGOLI Y, EL-KADY M F, NAZARI M, et al. Exploration of advanced electrode materials for approaching high-performance nickel-based superbatteries[J]. Small, 2020, 16(28): 2001340. |
42 | XU Bingyan, ZHANG Ying, PI Yecan, et al. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis[J]. Acta Physico Chimica Sinica, 2021, 37(7): 2009074. |
43 | YAN Yan, WANG Tianyi, LI Xinran, et al. Noble metal-based materials in high-performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2017, 4(1): 33-51. |
44 | TIAN Na, ZHOU Zhiyou, SUN Shigang, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735. |
45 | SHI Yi, LEE C, TAN Xianyi, et al. Atomic‐level metal electrodeposition: Synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion[J]. Small Structures, 2022, 3(3): 2100185. |
46 | 于栋, 罗庆, 苏伟, 等. 重金属废水电沉积处理技术研究及应用进展[J]. 化工进展, 2020, 39(5): 1938-1949. |
YU Dong, LUO Qing, SU Wei, et al. A review on research and application of electrodeposition for heavy metal wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1938-1949. | |
47 | YAO Pengyu, LI Zhong, ZHU Juncheng, et al. Controllable synthesis of NiCo-LDH/Co(OH)2@PPy composite via electrodeposition at high deposition voltages for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2021, 875: 160042. |
48 | THERESE G H A, KAMATH P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chemistry of Materials, 2000, 12(5): 1195-1204. |
49 | ROHIT R C, JAGADALE A D, SHINDE S K, et al. A review on electrodeposited layered double hydroxides for energy and environmental applications[J]. Materials Today Communications, 2021, 27: 102275. |
50 | KALININA E G, PIKALOVA E Y. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects[J]. Russian Chemical Reviews, 2019, 88(12): 1179-1219. |
51 | KALE M B, BORSE R A, MOHAMED A G A, et al. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion[J]. Advanced Functional Materials, 2021, 31(25): 2101313. |
52 | BESRA L, LIU M L. A review on fundamentals and applications of electrophoretic deposition (EPD)[J]. Progress in Materials Science, 2007, 52(1): 1-61. |
53 | ULBERG Z R, SHILOV V N, EREMOVA Y Y. Stationary electrophoretic deposit as a concentrated disperse system: Effect of accumulative mechanism[J]. Progress in Organic Coatings, 1995, 25(3): 283-292. |
54 | PARKS G A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems[J]. Chemical Reviews, 1965, 65(2): 177-198. |
55 | ZHITOMIRSKY I. Electrochemical processing and characterization of nickel hydroxide–polyelectrolyte films[J]. Materials Letters, 2004, 58(3/4): 420-424. |
56 | ZHITOMIRSKY I, PETRIC A. Electrolytic deposition of Gd2O3 and organoceramic composite[J]. Materials Letters, 2000, 42(5): 273-279. |
57 | ZHITOMIRSKY I, PETRIC A. Electrolytic deposition of zirconia and zirconia organoceramic composites[J]. Materials Letters, 2000, 46(1): 1-6. |
58 | FORSMAN W C, VOGEL F L, CARL D E, et al. Chemistry of graphite intercalation by nitric acid[J]. Carbon, 1978, 16(4): 269-271. |
59 | SONG Fang, HU Xile. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5(1): 4477. |
60 | YAN Zhenhua, SUN Hongming, CHEN Xiang, et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature Communications, 2018, 9(1): 2373. |
61 | WANG Xiaoliang, CHENG Yan, QIAO Xinye, et al. High-loading and high-performance NiMn layered double hydroxide nanosheets supported on nickel foam for supercapacitor via sodium dodecyl sulfonate intercalation[J]. Journal of Energy Storage, 2022, 52: 104834. |
62 | BERNAL LOPEZ M, USTARROZ J. Electrodeposition of nanostructured catalysts for electrochemical energy conversion: Current trends and innovative strategies[J]. Current Opinion in Electrochemistry, 2021, 27: 100688. |
63 | 丁丽丽, 陈阳. 超级电容器电极材料研究进展[J]. 山东化工, 2021, 50(23): 65-67. |
DING Lili, CHEN Yang. Research progress of electrode materials for supercapacitor[J]. Shandong Chemical Industry, 2021, 50(23): 65-67. | |
64 | VALDÉS M, DI IORIO Y, CASTAÑEDA K, et al. Cu2ZnSnS4 thin films prepared by sulfurization of co-electrodeposited metallic precursors[J]. Journal of Applied Electrochemistry, 2017, 47(6): 755-765. |
65 | HAN Xiangyu, LI Ji’en, LU Junlin, et al. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy, 2021, 86: 106079. |
66 | 韩红江. 提高Ni-P-Al2O3纳米复合涂层综合性能的关键因素研究[D]. 新乡: 河南科技学院, 2022. |
HAN Jiangjiang. Study on the key factors to improve the comprehensive properties of Ni-P-Al2O3 nanocomposite coating[D]. Xinxiang: Henan University of Science and Technology, 2022. | |
67 | SONG Yu, LIU Tianyu, YAO Bin, et al. Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors[J]. ACS Energy Letters, 2017, 2(8): 1752-1759. |
68 | ERUSAPPAN E, PAN G T, CHUNG H Y, et al. Hierarchical nickel-cobalt oxide and glucose-based carbon electrodes for asymmetric supercapacitor with high energy density[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 330-336. |
69 | WANG You, YIN Zhoulan, YAN Guochun, et al. New insight into the electrodeposition of NiCo layered double hydroxide and its capacitive evaluation[J]. Electrochimica Acta, 2020, 336: 135734. |
70 | WANG W D, ZHANG P P, GAO S Q, et al. Core-shell nanowires of NiCo2O4@α-Co(OH)2 on Ni foam with enhanced performances for supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 579: 71-81. |
71 | ZHOU Yunlong. Preparation and application of Co(OH)2/Ni-Co LDH as electrodes in supercapacitors[J]. International Journal of Electrochemical Science, 2019, 14(6), 5396-5407. |
72 | WANG Jianli, LIANG Jing, LIN Yuchen, et al. Nanowire stacked bimetallic metal-organic frameworks for asymmetric supercapacitor[J]. Chemical Engineering Journal, 2022, 446: 137368. |
73 | YU Zongliang, WANG Shunxiang, HUANG Yangming, et al. Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes[J]. Journal of Energy Storage, 2022, 55: 105486. |
74 | KANDHASAMY N, PREETHI L K, MANI D, et al. RGO nanosheet wrapped β-phase NiCu2S nanorods for advanced supercapacitor applications[J]. Environmental Science and Pollution Research, 2023, 30(7): 18546-18562. |
75 | LI Yingli, SHAN Lina, SUI Yanwei, et al. Ultrathin Ni-Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high-performance supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13360-13371. |
76 | GUPTA V, GUPTA S, MIURA N. Potentiostatically deposited nanostructured Co x Ni1- x layered double hydroxides as electrode materials for redox-supercapacitors[J]. Journal of Power Sources, 2008, 175(1): 680-685. |
77 | XIAO Bangqing, ZHU Wenliang, LI Zhong, et al. Tailoring morphology of cobalt-nickel layered double hydroxide via different surfactants for high-performance supercapacitor[J]. Royal Society Open Science, 2018, 5(9): 180867. |
78 | MAILE N C, SHINDE S K, PATIL R T, et al. Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: effect of deposition parameters[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3729-3743. |
79 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
80 | 晏荣伟. 椰壳活性炭比表面积和孔结构的调节及对超电容性能的影响[D]. 海口: 海南大学, 2018. |
YAN Rongwei. Regulation of specific surface area and pore structure of coconut shell activated carbon and its influence on the performance of supercapacitors[D]. Haikou: Hainan University, 2018. | |
81 | MIRZAEE M, DEHGHANIAN C. Flower-like mesoporous nano NiCo2O4-decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor[J]. Materials Research Bulletin, 2019, 109: 10-20. |
82 | WANG Zihao, LIU Zhiqiang, WANG Lei, et al. Construction of core‐shell heterostructured nanoarrays of Cu(OH)2 @NiFe‐layered double hydroxide through facile potentiostatic electrodeposition for highly efficient supercapacitors[J]. ChemElectroChem, 2022, 9(9): 1-11. |
83 | ZHANG Yanan, CHEN Junlei, SU Chenyang, et al. Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors[J]. Nano Research, 2022, 15(10): 8983-8990. |
84 | JORCIN J B, ORAZEM Mark E, PÉBÈRE N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2006, 51(8/9): 1473-1479. |
85 | GERMAN R, VENET P, SARI A, et al. Electrochemical double layer capacitors (supercapacitors) ageing impacts and comparison on different impedance models[J]. EPE Journal, 2016, 24(3): 6-13. |
86 | AGUILERA L, LEYET Y, DE LA CRUZ J P, et al. Influence of the deposition temperature on the properties of electrodeposited nickel hydroxide films: A study performed by EIS[J]. Materials Science and Engineering: B, 2018, 238/239: 1-6. |
87 | YANG Inchan, KWON Dahye, YOO Jihoon, et al. Design of organic supercapacitors with high performances using pore size controlled active materials[J]. Current Applied Physics, 2019, 19(2): 89-96. |
88 | JIANG Jibo, SUN Yaoxin, CHEN Yukai, et al. Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors[J]. Electrochimica Acta, 2020, 342: 136077. |
89 | LI H, MUSHARAVATI F, ZALENEZHAD E, et al. Electrodeposited NiCo layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors[J]. Electrochimica Acta, 2018, 261: 178-187. |
90 | HUANG Xing, SUN Ran, LI Yulu, et al. Two-step electrodeposition synthesis of heterogeneous NiCo-layered double hydroxides@MoO3 nanocomposites on nickel foam with high performance for hybrid supercapacitors[J]. Electrochimica Acta, 2022, 403: 139680. |
91 | CHUMINJAK Y, SINGJAI P, TUANTRANONT A, et al. High-capacity charge storage electrodes based on nickel oxide and nickel-cobalt double hydroxide nanocomposites on 3D nickel foam prepared by sparking and electrodeposition[J]. Journal of Alloys and Compounds, 2020, 841: 155793. |
92 | 于化江, 熊亮, 熊中琼, 等. 复合电沉积制备TiO2/泡沫镍光催化材料及其催化活性[J]. 化工进展, 2011, 30(9): 1972-1976. |
YU Huajiang, XIONG Liang, XIONG Zhongqiong, et al. Preparation of foam nickel-supported nanosized TiO2 by composite electrodeposition and its photocatalytic performance[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 1972-1976. | |
93 | ZHANG Yan, LIU Hong, HUANG Ming, et al. Engineering ultrathin Co(OH)2 nanosheets on dandelion-like CuCo2O4 microspheres for binder-free supercapacitors[J]. ChemElectroChem, 2017, 4(3): 721-727. |
94 | HU Xiaomin, LIU Shunchang, CHEN Yukai, et al. One-step electrodeposition fabrication of iron cobalt sulfide nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors[J]. Ionics, 2020, 26(4): 2095-2106. |
95 | BARAUSKIENĖ I, VALATKA E. Layer-by-layer electrodeposition of high-capacitance nickel-cobalt oxides on FTO substrate[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(11): 10311-10320. |
96 | YAO B, CHANDRASEKARAN S, ZHANG J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule, 2019, 3(2): 459-470. |
97 | 钟青, 孙爽, 潘牧. 电化学方法合成Pt纳米颗粒研究进展[J]. 材料导报, 2015, 29(17): 22-26. |
ZHONG Qing, SUN Shuang, PAN Mu. Research progress of producting pt nanoparticles by electrochemical methods[J]. Materials Bulletin, 2015, 29(17): 22-26. | |
98 | HE Qingqing, ZHOU Mingjie, HU Jiming. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys[J]. Electrochimica Acta, 2020, 355: 136796. |
99 | YOU Zheng, SHEN Kui, WU Zhicheng, et al. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors[J]. Applied Surface Science, 2012, 258(20): 8117-8123. |
100 | YANG Wanlu, GAO Zan, MA Jing, et al. Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors[J]. Dalton Transactions, 2013, 42(44): 15706-15715. |
101 | 彭友舜, 王晓娟, 张丽茜, 等. 电沉积方式对制备氧化锌薄膜的影响[J]. 电镀与精饰, 2015, 37(9): 7-11. |
PENG Youshun, WANG Xiaojuan, ZHANG Lixi, et al.Influences of deposition modes on ZnO films prepared by electro-deposition[J]. Electroplating & Finishing, 2015, 37(9): 7-11. | |
102 | 林志茂. 电沉积多孔镍基析氢电极的制备及其性能研究[D]. 杭州: 浙江工业大学, 2020. |
LIN Zhimao. Preparation and properties of electrodeposited porous nickel-based hydrogen evolution electrode[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
103 | 蒲西楼. 电沉积制备掺杂LDH超级电容器电极材料及其性能研究[D]. 西安: 西安建筑科技大学, 2021. |
PU Xilou. Preparation and performance of doped LDH supercapacitor electrode materials by electrodeposition[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. | |
104 | WU Maosung, HUANG Yuan, YANG Chung-Hsien. Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition[J]. Journal of The Electrochemical Society, 2008, 155(11): A798-A805. |
105 | HU Y, DEB S, LI D, et al. Effects of organic additives on the impurity and grain structure of electrodeposited cobalt[J]. Electrochimica Acta, 2021, 368: 137594. |
106 | CHHETRI M, DEY S, RAO C N R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co-La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition[J]. ACS Energy Letters, 2017, 2(5): 1062-1069. |
107 | YANG Yujun, LI Weikun. The co-electrodeposition of NiCo dihydroxide/carbon nanotubes nanocomposite on Ni3Se2-modified nickel foam for hybrid supercapacitor[J]. Journal of the Iranian Chemical Society, 2020, 17(8): 2133-2143. |
108 | RAZMJOO O, BAHROLOLOOM M E, NAJAFISAYAR P. The effect of current density on the composition, structure, morphology and optical properties of galvanostatically electrodeposited nanostructured cadmium telluride films[J]. Ceramics International, 2017, 43(1): 121-127. |
109 | ZHANG Lijie, ZONG Xuemei, YUAN Xiaoming, et al. Effects of polyurethane substrate pre-treatment on pulsed cathodic arc deposited DLC films[J]. Coatings, 2020, 10(6): 545. |
110 | WANG Senlin, HUANG Zongchuan, LI Rui, et al. Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors[J]. Electrochimica Acta, 2016, 204: 160-168. |
111 | YUAN Changzhou, LI Jiaoyang, HOU Linrui, et al. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors[J]. Advanced Functional Materials, 2012, 22(21): 4592-4597. |
112 | Sa LYU, GENG Peiyu, WANG Huan, et al. In situ construction of ZnO/Ni2S3 composite on Ni foam by combing potentiostatic deposition with cyclic voltammetric electrodeposition[J]. Micromachines, 2021, 12(7): 829. |
113 | LI Xudan, HE Hanwei. Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors[J]. Applied Surface Science, 2019, 470: 306-317. |
114 | HAN Chong, CAO Weiyi, SI Huizheng, et al. One-step electrodeposition synthesis of high performance carbon nanotubes/graphene-doped Ni(OH)2 thin film electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2019, 322: 134747. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[11] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[12] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[13] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[14] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |