化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5259-5271.DOI: 10.16085/j.issn.1000-6613.2022-2228
收稿日期:
2022-12-01
修回日期:
2023-02-11
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
徐娜
作者简介:
徐娜(1980—),女,博士,高级实验师,研究方向为生物质材料的资源化利用。E-mail:xuna19992003@163.com。
基金资助:
XU Na(), WANG Guodong, TAO Yanan
Received:
2022-12-01
Revised:
2023-02-11
Online:
2023-10-15
Published:
2023-11-11
Contact:
XU Na
摘要:
伴随着数字医疗与制造业的进步,灵活柔韧的柔性可穿戴设备可以和人体表面完全贴合,从而对人体运动及健康信号等进行监测,从而实现多种传感功能。柔性可穿戴设备具有灵活性、体积可变、生物适应性好等优点,但仍然存在灵敏度低、检测范围有限、易受外界环境的干扰、可靠性低等问题。在柔性可穿戴设备中,一个关键器件就是用于压力检测的柔性压力传感器。在今后几年柔性可穿戴压力传感器会更加注重新型结构传感器的探索和整体高性能传感器的构建。本文概述了近年来柔性压力传感器的研究进展,并就压力传感器种类、工作机理、设计原则及最新进展进行了说明。通过近年来的文献重点对压阻式压力传感器在材料及器件设计等方面进行归纳整理与总结,并对压阻式压力传感器主要应用领域做了简单介绍。从压阻式压力传感器的结构设计及今后应用的角度出发,概述了压阻式压力传感器的可靠性及未来面临的挑战。
中图分类号:
徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271.
XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271.
压力传感器类型 | 工作原理 | 灵敏度 | 响应 时间 | 线性 范围 | 优点 | 不足 |
---|---|---|---|---|---|---|
压阻式 | 压阻效应 | 较高 | 短 | 宽 | 结构简单、分辨率高,功耗低 | 灵敏度受温度影响较大 |
电容式 | 电容变化 | 相对较低 | 短 | 较小 | 具有良好的线性度和较低的压力检测极限 | 灵敏度受面积的限制,可靠性低 |
压电式 | 压电效应 | 高 | 较长 | 宽 | 体积小、动态性好、耐高温 | 电流响应较差,成本较高 |
摩擦电式 | 摩擦电和静电感应的耦合效应 | 高 | 短 | 较小 | 低成本、高输出性能、可持续性 | 可靠性低,受温度和湿度影响较大 |
表1 不同类型压力传感器性能对比
压力传感器类型 | 工作原理 | 灵敏度 | 响应 时间 | 线性 范围 | 优点 | 不足 |
---|---|---|---|---|---|---|
压阻式 | 压阻效应 | 较高 | 短 | 宽 | 结构简单、分辨率高,功耗低 | 灵敏度受温度影响较大 |
电容式 | 电容变化 | 相对较低 | 短 | 较小 | 具有良好的线性度和较低的压力检测极限 | 灵敏度受面积的限制,可靠性低 |
压电式 | 压电效应 | 高 | 较长 | 宽 | 体积小、动态性好、耐高温 | 电流响应较差,成本较高 |
摩擦电式 | 摩擦电和静电感应的耦合效应 | 高 | 短 | 较小 | 低成本、高输出性能、可持续性 | 可靠性低,受温度和湿度影响较大 |
1 | WU Yuting, YAN Tao, PAN Zhijuan. Wearable carbon-based resistive sensors for strain detection: A Review[J]. IEEE Sensors Journal, 2021, 21(4): 4030-4043. |
2 | DING Yichun, XU Tao, OBIORA Onyilagha, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-6704. |
3 | WANG Zhenwu, CONG Yang, FU Jun. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8(16): 3437-3459. |
4 | CUI Z, Felipe R P, ZHU Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17836-17842. |
5 | WU Jin, WU Zixuan, WEI Yaoming, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19069-19079. |
6 | LIU Haoran, ZHANG Zhenyi, GE Jun, et al. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection[J]. Journal of Materials Science & Technology, 2019, 35(1): 176-180. |
7 | SOUMALYA Kundu, RAHUL Majumder, Ghosh RIA, et al. Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: Wearable and flexible human respiration monitoring application[J]. Journal of Materials Science, 2020, 55(9): 3884-3901. |
8 | AN Qingbo, GAN Shiyu, XU Jianan, et al. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring[J]. Electrochemistry Communications, 2019, 107: 106553. |
9 | GAO Yuyu, YAN Cheng, HUANG Haichao, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor[J]. Advanced Functional Materials, 2020, 30(11): 1909603. |
10 | NASIRI S, KHOSRAVANI M R. Progress and challenges in fabrication of wearable sensors for health monitoring[J]. Sensors and Actuators A: Physical, 2020, 312: 112105. |
11 | SEYEDIN Shayan, ZHANG Peng, NAEBE Maryam, et al. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-249. |
12 | HUANG Y, FAN X Y, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509. |
13 | KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 58403-58411. |
14 | WANG Dongyue, ZHANG Dongzhi, LI Peng, et al. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters, 2021, 13(1): 57 |
15 | ESCOBEDO Pablo, BHATTACHARJEE Mitradip, NIKBAKHTNASRABADI Fatemeh, et al. Smart bandage with wireless strain and temperature sensors and batteryless NFC tag[J]. IEEE Internet of Things Journal, 2020, 8(6): 5093-5100. |
16 | CHU Na, LIANG Qinjun, HAO Wen, et al. Microbial electrochemical sensor for water biotoxicity monitoring[J]. Chemical Engineering Journal, 2021, 404: 127053. |
17 | ZHU Guanjun, REN Penggang, WANG Jin, et al. A highly sensitive and broad-range pressure sensor based on polyurethane mesodome arrays embedded with silver nanowires[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19988-19999. |
18 | LI Wei, JIN Xin, HAN Xing, et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220. |
19 | LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021, 87: 106181. |
20 | WANG Xiangfu, YU Jihong, CUI Yixuan, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical, 2021, 330: 112838. |
21 | JAYATHILAKA W A, QI K, QIN Y, et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors[J]. Advanced Material, 2019, 31(7): e1805921. |
22 | KIM S R, KIM J H, PARK J W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26407-26416. |
23 | WON D J, YOO D W, KIM J W. Effect of a microstructured dielectric layer on a bending-insensitive capacitive-type touch sensor with shielding[J]. ACS Applied Electronic Materials, 2020, 2(3): 846-854. |
24 | ELSAYES Ahmed, SHARMA Vipul, YIANNACOU Kyriacos, et al. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4(9): 2000056. |
25 | PIERRE C U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187. |
26 | YANG Ye, PAN Hong, XIE Guangzhong, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020, 301: 111789. |
27 | LU Lijun, ZHAO Ning, LIU Jingquan, et al. Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency[J]. Journal of Materials Chemistry C, 2021, 9(29): 9309-9318. |
28 | MISHRA R B, EL-ATAB N, HUSSAIN A M, et al. Recent progress on flexible capacitive pressure sensors: From design and materials to applications[J]. Advanced Materials Technologies, 2021, 6(4): 2001023. |
29 | WANG Yuejiao, LI Xiang, FAN Sufeng, et al. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL)[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8901-8908. |
30 | CAI Y W, ZHANG X N, WANG G G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin[J]. Nano Energy, 2021, 81: 105663. |
31 | LOU Mengna, IBRAHIM Abdalla, ZHU Miaomiao, et al. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1597-1605. |
32 | FIORILLO A S, CRITELLO C D, PULLANO A S, et al. Theory, technology and applications of piezoresistive sensors: A review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175. |
33 | LI Lin, ZHENG Jiahong, CHEN Jing, et al. Flexible pressure sensors for biomedical applications: From ex vivo to in vivo [J]. Advanced Materials Interfaces, 2020, 7(17): 2000743. |
34 | ZHU Xiaobo, QIAN Zhentao, CHEN Xue, et al. Electrohydrodynamics-printed silver nanoparticle flexible pressure sensors with improved gauge factor[J]. IEEE Sensors Journal, 2021, 21(5): 5836-5844. |
35 | GUO Rui, LIU Jing. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions[J]. Journal of Micromechanics and Microengineering, 2017, 27(10): 104002. |
36 | ZHAI Wei, XIA Quanjun, ZHOU Kangkang, et al. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability[J]. Chemical Engineering Journal, 2019, 372: 373-382. |
37 | ZHU Jing, ZHANG Qiang, CHENG Yongqiang, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors based on graphene-PDMS@sponge[J]. Journal of Micromechanics and Microengineering, 2020, 30(8): 085012. |
38 | HERREN Blake, WEBSTER Vincent, DAVIDSON Eric, et al. PDMS sponges with embedded carbon nanotubes as piezoresistive sensors for human motion detection[J]. Nanomaterials, 2021, 11(7): 1740. |
39 | LI Yunxia, JIANG Changjun, HAN Weihua. Extending the pressure sensing range of porous polypyrrole with multiscale microstructures[J]. Nanoscale, 2020, 12(3): 2081-2088. |
40 | PENG Zhongquan, ZHANG Xiaodong, ZHAO Chunmei, et al. Hydrophobic and stable MXene/reduced graphene oxide/polymer hybrid materials pressure sensors with an ultrahigh sensitive and rapid response speed pressure sensor for health monitoring[J]. Materials Chemistry and Physics, 2021, 271: 124729. |
41 | HUANG Siya, LIU Yuan, ZHAO Yue, et al. Flexible electronics: Stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924. |
42 | YIN Mingjie, ZHANG Yangxi, YIN Zhigang, et al. Wearable sensors: Micropatterned elastic gold-nanowire/polyacrylamide composite hydrogels for wearable pressure sensors[J]. Advanced Materials Technologies, 2018, 3(7): 1870029. |
43 | BANG Soa, Jaeeun LIM, CHUN Sungwoo, et al. A flexible graphene-polydimethylsiloxane nanocomposite force sensor with linear response across a wide pressure detection range[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3): 1630-1634. |
44 | SU Yue, ZHANG Wei, CHEN Shanming, et al. Piezoresistive electronic-skin sensors produced with self-channeling laser microstructured silicon molds[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 786-792. |
45 | HUANG Jieyu, LI Dawei, ZHAO Min, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. |
46 | CHEN Shiqiang, WANG Yidi, FEI Bin, et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane[J]. Chemical Engineering Journal, 2022, 430: 131980. |
47 | ZHOU Hongwei, WANG Zhiwen, ZHAO Weifeng, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chemical Engineering Journal, 2021, 403: 126307. |
48 | ABADI M B, WEISSING R, WILHELM M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34996-35007. |
49 | HE Jiang, ZHANG Yufei, ZHOU Runhui, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
50 | LI T T, WANG Y T, PENG H K, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105685. |
51 | LEE D H, CHUANG C H, SHAIKH M O, et al. Flexible piezoresistive tactile sensor based on polymeric nanocomposites with grid-type microstructure[J]. Micromachines, 2021, 12(4): 452. |
52 | QASIM S B, ZAFAR M S, SHARIQ N, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine[J]. International Journal of Molecular Sciences, 2018, 19(2): 407. |
53 | LI Jianpeng, YANG Yifan, WANG Qiao, et al. Design of size-controlled Au nanoparticles loaded on the surface of ZnO for ethanol detection[J]. CrystEngComm, 2021, 23(4): 783-792. |
54 | HE Jiang, XIAO Peng, LU Wei, et al. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy, 2019, 59: 422-433. |
55 | JI Bing, ZHOU Qian, WU Jinbo, et al. Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 31021-31035. |
56 | LEE Youngoh, MYOUNG Jinyoung, CHO Soowon, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano, 2021, 15(1): 1795-1804. |
57 | AJEEV A, JAVAREGOWDA B H, ALI A, et al. Ultrahigh sensitive carbon-based conducting rubbers for flexible and wearable human-machine intelligence sensing[J]. Advanced Materials Technologies, 2020, 5(12): 2000690. |
58 | GOGURLA Narendar, KIM Sunghwan. Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human-machine interfaces[J]. Advanced Energy Materials, 2021, 11(29): 2100801. |
59 | XU Mengting, CAI Haihua, LIU Zulan, et al. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection[J]. Advanced Electronic Materials, 2021, 7(10): 2100368. |
60 | MA Zhong, LI Sheng, WANG Huiting, et al. Advanced electronic skin devices for healthcare applications[J]. Journal of Materials Chemistry B, 2019, 7(2): 173-197. |
61 | WANG Xuechuan, YUE Ouyang, LIU Xinhua, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure[J]. Chemical Engineering Journal, 2020, 392: 123672. |
62 | XU Shihong, FAN Zeng, YANG Shuaitao, et al. Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers[J]. Chemical Engineering Journal, 2021, 404: 126064. |
63 | WU Xiaodong, KHAN Yasser, TING Jonathan, et al. Large-area fabrication of high-performance flexible and wearable pressure sensors[J]. Advanced Electronic Materials, 2020, 6(2): 1901310. |
64 | GAO Jiefeng, LI Bei, HUANG Xuewu, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal, 2019, 373: 298-306. |
65 | CAI Yichen, SHEN Jie, GE Gang, et al. Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano, 2018, 12(1): 56-62. |
[1] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[2] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
[3] | 岳孟, 郑琼, 阎景旺, 张华民, 李先锋. 液流电池流场结构设计与优化研究进展[J]. 化工进展, 2021, 40(9): 4853-4868. |
[4] | 王学科, 沈义伟, 赵洪滨, 曹岭, 陈山, 贾彩, 谢晓峰. 旋涡式氢气循环泵的设计及性能分析[J]. 化工进展, 2020, 39(S2): 89-96. |
[5] | 倪永涛, 赵钦新, 桂雍, 王云刚, 邵怀爽. 两级低压引射器的结构设计与数值分析[J]. 化工进展, 2020, 39(S1): 69-76. |
[6] | 许晓芝, 李彪, 施凯强, 董思源, 靳祖超, 韩景宾. LDHs基气体阻隔薄膜材料的研究进展[J]. 化工进展, 2020, 39(6): 2177-2186. |
[7] | 王万兵,高晓辉,李怀阳,高文博,李玉峰. 石墨烯/导电聚合物复合防腐蚀材料制备及应用研究进展[J]. 化工进展, 2020, 39(3): 1080-1089. |
[8] | 裴强,丁爱祥,杨明丽,徐果,徐文豪. 氢键型超分子聚合物[J]. 化工进展, 2020, 39(1): 233-249. |
[9] | 覃发梅, 邱学青, 孙川, 丁子先, 方志强. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(07): 3390-3401. |
[10] | 于宾, 赵晓明, 孙天. 基于纤维取向的纳米纤维滤料设计及其性能[J]. 化工进展, 2018, 37(10): 3966-3973. |
[11] | 尚阳, 王跃社. 单喷嘴低压引射器的结构设计与数值分析[J]. 化工进展, 2017, 36(S1): 107-114. |
[12] | 孙善富, 孙明轩, 方亚林, 王莹. 染料敏化太阳能电池非铂对电极研究进展[J]. 化工进展, 2016, 35(10): 3236-3250. |
[13] | 严涛, 刘玉丰, 刘丰. 液化天然气(LNG)接收站节能再冷凝器的研究与设计[J]. 化工进展, 2015, 34(s1): 51-54. |
[14] | 胡琼, 孙见君, 涂桥安, 马晨波, 何斌辉, 刘平. 剖分式机械密封技术研究现状及关键问题探讨[J]. 化工进展, 2015, 34(05): 1207-1214. |
[15] | 冯辉霞,王滨,谭琳,雒和明,张德懿. 导电聚合物基超级电容器电极材料研究进展[J]. 化工进展, 2014, 33(03): 689-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |