1 |
WU Tongwei, LI Xinyi, ZHU Xiaojuan, et al. P-doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chemical Communications, 2020, 56(12): 1831-1834.
|
2 |
DEHKHODA A M, ELLIS N, GYENGE E. Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance[J]. Journal of Applied Electrochemistry, 2014, 44(1): 141-157.
|
3 |
邓秀春, 卓祖优, 白小杰, 等. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能 [J]. 化工进展, 2021, 40(10): 5642-5651.
|
|
DENG Xiuchun, ZHUO Zuyou, BAI Xiaojie, et al. Three-dimensional hierarchical porous carbon derived from spent culture substrate of white fungus and its electrochemical application[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5642-5651.
|
4 |
徐舟, 侯程, 王诗琴, 等. 氧化镍/碳纳米管构筑准固态不对称超级电容器及电化学性能[J]. 化工进展, 2020, 39(10): 4088-4094.
|
|
XU Zhou, HOU Cheng, WANG Shiqin, et al. Quasi-solid-state asymmetric supercapacitor constructed with NiO/CNT composites and its electrochemical performance[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4088-4094.
|
5 |
ZHOU D, CUI Y, HAN B H. Graphene-based hybrid materials and their applications in energy storage and conversion[J]. Chinese Science Bulletin, 2012, 57(23): 2983-2994.
|
6 |
刘亚菲. 超级电容器活性炭电极材料的孔径调控和表面改性[D]. 上海: 同济大学, 2008.
|
|
LIU Yafei. Tailoring pore size and surface modification of activated carbon as electrode materials for supercapacitor[D]. Shanghai: Tongji University, 2008.
|
7 |
马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396.
|
|
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396.
|
8 |
ZHU Y Y, CHEN M M, ZHANG Y, et al. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor[J]. Carbon, 2018, 140: 404-412.
|
9 |
杨旋, 郑新宇, 吕建华, 等. 碱/尿素溶解体系制备氮掺杂活性炭及其电化学性能研究[J]. 林产化学与工业, 2021, 41(2): 10-16.
|
|
YANG Xuan, ZHENG Xinyu, Jianhua LYU, et al. Preparation of nitrogen-doped activated carbon from alkali/urea dissolution system and its electrochemical properties[J]. Chemistry and Industry of Forest Products, 2021, 41(2): 10-16.
|
10 |
LIU Y C, HUANG B B, LIN X X, et al. Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach[J]. Journal of Materials Chemistry A, 2017, 5(25): 13009-13018.
|
11 |
PUZIY A M, PODDUBNAYA O I, GAWDZIK B, et al. Phosphorus-containing carbons: preparation, properties and utilization[J]. Carbon, 2020, 157: 796-846.
|
12 |
QIAN Y, JIANG S, LI Y, et al. In situ revealing the electroactivity of P—O and P—C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901676.
|
13 |
WANG Y K, ZHANG M K, DAI Y, et al. Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors[J]. Journal of Power Sources, 2019, 438: 227045.
|
14 |
ZHI B, GALLAGHER M J, FRANK B P, et al. Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact[J]. Carbon, 2018, 129: 438-449.
|
15 |
LIN C, HU R Z, LIU J, et al. A nanorod FeP@phosphorus-doped carbon composite for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 763: 296-304.
|
16 |
HE Z X, JIANG Y Q, ZHU J, et al. Phosphorus doped multi-walled carbon nanotubes: an excellent electrocatalyst for the VO2+/VO 2 + redox reaction[J]. ChemElectroChem, 2018, 5(17): 2464-2474.
|
17 |
DUBALE A A, AHMED I N, CHEN X H, et al. A highly stable metal-organic framework derived phosphorus doped carbon/Cu2O structure for efficient photocatalytic phenol degradation and hydrogen production[J]. Journal of Materials Chemistry A, 2019, 7(11): 6062-6079.
|
18 |
LIU B, JIN L, ZHONG W, et al. Ultrafine and ligand-free precious metal (Ru, Ag, Au, Rh and Pd) nanoclusters supported on phosphorus-doped carbon[J]. Chemistry—A European Journal, 2018, 24(11): 2565-2569.
|
19 |
SARKAR S, DAS K, GHOSH M, et al. Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe[J]. RSC Advances, 2015, 5(81): 65913-65921.
|
20 |
NIROSHA B, SELVAKUMAR R, JEYANTHI J, et al. Elaeocarpus tectorius derived phosphorus-doped carbon as an electrode material for an asymmetric supercapacitor[J]. New Journal of Chemistry, 2020, 44(1): 181-193.
|
21 |
LIN G F, WANG Q, YANG X, et al. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization[J]. RSC Advances, 2020, 10(30): 17768-17776.
|
22 |
SUÁREZ-GARCÍA F, MARTÍNEZ-ALONSO A, TASCÓN J M D. Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temperature and time effects[J]. Microporous and Mesoporous Materials, 2004, 75(1/2): 73-80.
|
23 |
MEI B A, MUNTESHARI O, LAU J, et al. Physical interpretations of nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C, 2018, 122(1): 194-206.
|
24 |
CHAO D L, ZHU C R, YANG P H, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications, 2016, 7: 12122.
|
25 |
GAO Y, LI Z L, FU Z, et al. Highly selective capacitive deionization of copper ions in FeS2@N, S co-doped carbon electrode from wastewater[J]. Separation and Purification Technology, 2021, 262: 118336.
|
26 |
MA W P, XIE L J, DAI L Q, et al. Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode[J]. Electrochimica Acta, 2018, 266: 420-430.
|
27 |
王芳平, 马婧, 李小亚, 等. 板栗壳生物炭高性能对称性超级电容器电极材料的制备及性能[J]. 化工进展, 2021, 40(8): 4381-4387.
|
|
WANG Fangping, MA Jing, LI Xiaoya, et al. Preparation and properties of chestnut shell-based biochar electrode material for high-performance symmetrical supercapacitor[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4381-4387.
|
28 |
LIN C, RITTER J A, POPOV B N, et al. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes[J]. Journal of the Electrochemical Society, 1999, 146(9): 3168-3175.
|
29 |
ANDREAS H A, CONWAY B E. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs[J]. Electrochimica Acta, 2006, 51(28): 6510-6520.
|
30 |
SHEN X Y, LI X D, ZHAO F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application[J]. 2D Materials, 2019, 6(3): 035020.
|
31 |
PUZIY A M, PODDUBNAYA O I, MARTÍNEZ-ALONSO A, et al. Surface chemistry of phosphorus-containing carbons of lignocellulosic origin[J]. Carbon, 2005, 43(14): 2857-2868.
|
32 |
HU X W, FAN M Y, ZHU Y Y, et al. Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols[J]. Green Chemistry, 2019, 21(19): 5274-5283.
|