1 |
CHEN Y J, LIU Z E, SUN L, et al. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte[J]. Journal of Power Sources, 2018, 390: 215-223.
|
2 |
蔡诗怡, 李津瑜, 吴丽霞, 等. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057.
|
|
CAI S Y, LI J Y, WU L X, et al. Progress of MOF materials applied in Li-S batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3046-3057.
|
3 |
HU Y, PAN J, LI Q, et al. Poly(ionic liquid)-based conductive interlayer as an efficient polysulfide adsorbent for a highly stable lithium-sulfur battery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11396-11403.
|
4 |
LI R L, RAO D W, ZHOU J B, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries[J]. Nature Communications, 2021, 12: 3102.
|
5 |
BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
|
6 |
YANG J H, YANG X F, CHEONG J L, et al. Nanoboxes with a porous MnO core and amorphous TiO2 shell as a mediator for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(8): 4952-4961.
|
7 |
LI Y J, GUO S J. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter., 2021, 4(4): 1142-1188.
|
8 |
HOU L P, ZHANG X Q, LI B Q, et al. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries[J]. Materials Today, 2021, 45: 62-76.
|
9 |
GUPTA A, MANTHIRAM A. Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(22): 13242-13251.
|
10 |
王杰, 孙晓刚, 陈珑, 等. 多壁碳纳米管夹层抑制锂硫电池穿梭效应[J]. 化工进展, 2018, 37(3): 1070-1075.
|
|
WANG J, SUN X G, CHEN L, et al. Multi-walled carbon nanotube interlayer for checking of the shuttle effect of lithium-sulphur battery[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1070-1075.
|
11 |
JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
|
12 |
HONG S K, WANG Y, KIM N, et al. Polymer-based electrolytes for all-solid-state lithium-sulfur batteries: from fundamental research to performance improvement[J]. Journal of Materials Science, 2021, 56(14): 8358-8382.
|
13 |
XU R, XIAO B W, XUAN C, et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34274-34281.
|
14 |
SUN W H, SUN X G, AKHTAR N, et al. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 364-374.
|
15 |
XIA S X, ZHANG X, YANG G Z, et al. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11920-11929.
|
16 |
WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710.
|
17 |
NIE B S, LIU X F, YANG L L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917.
|
18 |
ZHU Q Z, ZHAO Q, AN Y B, et al. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery[J]. Nano Energy, 2017, 33: 402-409.
|
19 |
PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260.
|
20 |
CHEN L, YU H, LI W X, et al. Interlayer design based on carbon materials for lithium-sulfur batteries: a review[J]. Journal of Materials Chemistry A, 2020, 8(21): 10709-10735.
|
21 |
DENG N P, KANG W M, LIU Y B, et al. A review on separators for lithiumsulfur battery: progress and prospects[J]. Journal of Power Sources, 2016, 331: 132-155.
|
22 |
YUAN L X, YUAN H P, QIU X P, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources, 2009, 189(2): 1141-1146.
|
23 |
LEE S Y, CHOI Y, KIM J K, et al. Biomass-garlic-peel-derived porous carbon framework as a sulfur host for lithium-sulfur batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 272-281.
|
24 |
MOORTHY B, KWON S, KIM J H, et al. Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries[J]. Nanoscale Horizons, 2019, 4(1): 214-222.
|
25 |
TIAN Y, LI G R, ZHANG Y G, et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(4): 1904876.
|
26 |
ALI T, YAN C L. 2 D Materials for inhibiting the shuttle effect in advanced lithium-sulfur batteries[J]. ChemSusChem, 2020, 13(6): 1447-1479.
|
27 |
TAO X Y, WANG J G, LIU C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: 11203.
|
28 |
HU Y, CHENG C, YAN T R, et al. Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy[J]. Chemical Engineering Journal, 2021, 421: 129997.
|
29 |
WEI B B, SHANG C Q, WANG X, et al. Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries[J]. Small, 2020, 16(34): 2002789.
|
30 |
CHEN H H, XIAO Y W, CHEN C, et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11459-11465.
|
31 |
HUANG W L, LIN Z J, LIU H T, et al. Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 17132-17141.
|
32 |
TU J X, LI H J, LAN T B, et al. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2020, 822: 153751.
|
33 |
HOU C X, WANG J, DU W, et al. One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage[J]. Journal of Materials Chemistry A, 2019, 7(22): 13460-13472.
|