1 |
AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.
|
2 |
AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.
|
3 |
CAO J, LU C H, ZHUANG J, et al. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions[J]. Angewandte Chemie International Edition, 2017, 56(30): 8795-8800.
|
4 |
CHEN Y Y, LU K Y, SONG Y H, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials, 2019, 9(12): 1737.
|
5 |
LI X B, HE L Z, LI Y F, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773.
|
6 |
LEE Y, SONG W J, SUN J Y. Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258.
|
7 |
CHENG Y, CHAN K H, WANG X Q, et al. Direct-ink-write 3D printing of hydrogels into biomimetic soft robots[J]. ACS Nano, 2019, 13(11): 13176-13184.
|
8 |
王特. 基于非共价键交联的聚丙烯酸导电水凝胶的制备及性能研究[D]. 长春: 长春工业大学, 2020.
|
|
WANG Te. Preparation and properties of non-covalent bonded polyacrylic conductive hydrogel[D]. Changchun: Changchun University of Technology, 2020.
|
9 |
LIU X Y, MA Y J, ZHANG X H, et al. Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126076.
|
10 |
XIAO G F, WANG Y, ZHANG H, et al. Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors[J]. International Journal of Biological Macromolecules, 2021, 170: 272-283.
|
11 |
王志国, 蒋杰, 司玉丹, 等. 纳米纤维素-聚乙烯醇复合凝胶的制备及表征[J]. 南京工业大学学报(自然科学版), 2017, 39(6): 19-24.
|
|
WANG Zhiguo, JIANG Jie, SI Yudan, et al. Preparation and characterization of nanocellulose-polyvinyl alcohol gels[J]. Journal of Nanjing Tech University (Natural Science Edition), 2017, 39(6): 19-24.
|
12 |
韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10): 2312-2320.
|
|
HAN Jingquan, WANG Huixiang, YUE Yiying, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2312-2320.
|
13 |
韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(1): 84-89.
|
|
HAN Jingquan, DING Qinqin, BAO Yaqian, et al. Synthesis and characterization of nanocellulose reinforced conductive hydrogel[J]. Journal of Forestry Engineering, 2017, 2(1): 84-89.
|
14 |
ZHANG W, WEN J Y, MA M G, et al. Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors[J]. Journal of Materials Research and Technology, 2021, 14: 555-566.
|
15 |
杨旋, 唐丽荣, 林凤采, 等. 纳米纤维素/壳聚糖/明胶复合膜的制备及其性能研究[J]. 生物质化学工程, 2018, 52(1): 17-22.
|
|
YANG Xuan, TANG Lirong, LIN Fengcai, et al. Preparation and properties of nanocellulose/chitosan/gelatin composite films[J]. Biomass Chemical Engineering, 2018, 52(1): 17-22.
|
16 |
DU H S, LIU W, ZHANG M M, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2019, 209: 130-144.
|
17 |
GE W J, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions[J]. Chemical Engineering Journal, 2021, 408: 127306.
|
18 |
HAN L, CUI S, YU H Y, et al. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44642-44651.
|
19 |
LIN F C, ZHENG R T, CHEN J W, et al. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels[J]. Carbohydrate Polymers, 2019, 205: 244-254.
|
20 |
ELASHNIKOV R, RIMPELOVÁ S, DĚKANOVSKÝ L, et al. Polypyrrole-coated cellulose nanofibers: influence of orientation, coverage and electrical stimulation on SH-SY5Y behavior[J]. Journal of Materials Chemistry B, 2019, 7(42): 6500-6507.
|
21 |
王杰, 李莹, 邵亮, 等. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能[J]. 高等学校化学学报, 2021, 42(3): 929-936.
|
|
WANG Jie, LI Ying, SHAO Liang, et al. Preparation and properties of poly(vinyl alcohol)/polypyrrole composite conductive hydrogel strain sensor[J]. Chemical Journal of Chinese Universities, 2021, 42(3): 929-936.
|
22 |
XU K W, WANG Y F, ZHANG B, et al. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity[J]. Composites Communications, 2021, 24: 100677.
|
23 |
LI Y Q, LIU X H, GONG Q, et al. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors[J]. International Journal of Biological Macromolecules, 2021, 172: 41-54.
|
24 |
CAO J L, HE G H, NING X Q, et al. Hydroxypropyl chitosan-based dual self-healing hydrogel for adsorption of chromium ions[J]. International Journal of Biological Macromolecules, 2021, 174: 89-100.
|
25 |
卢雪婷. 基于苯硼酸共聚物的自愈合水凝胶的制备及性能研究[D]. 长春: 长春工业大学, 2019.
|
|
LU Xueting. Preparation and properties of self-healing hydrogel based on phenylboronic acid copolymer[D]. Changchun: Changchun University of Technology, 2019.
|
26 |
DING Q, XU X, YUE Y, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27987–28002.
|
27 |
葛文娇. 纳米纤维素增强导电复合水凝胶的构建与性能调控[D]. 广州: 华南理工大学, 2019.
|
|
GE Wenjiao. Construction and performance modulation of nanacellulose reinforced conductive composite hydrogels[D]. Guangzhou: South China Unversity of Technology, 2019.
|