化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3624-3635.DOI: 10.16085/j.issn.1000-6613.2021-1839
收稿日期:
2021-08-27
修回日期:
2021-10-06
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
鲍艳
作者简介:
鲍艳(1981—),女,教授,博士生导师,研究方向为有机/无机复合材料。E-mail:基金资助:
BAO Yan1,2(), ZHENG Xi1, GUO Ruyue1
Received:
2021-08-27
Revised:
2021-10-06
Online:
2022-07-25
Published:
2022-07-23
Contact:
BAO Yan
摘要:
目前,大多数柔性压力传感器采用不可降解材料制备,导致在使用完成后无法处理,堆积过多成为电子垃圾,给环境带来很大压力。随着科学技术的发展,可降解材料的出现为柔性压力传感器的变革提供了巨大的机会。基于可降解材料制备的柔性压力传感器由于在个人健康管理、医疗监控、环境监测等领域发挥着重要作用,且在减少电子垃圾,缓解环境问题方面具有巨大潜力,已成为当今的研究热点。基于此,本文从柔性可降解压力传感器的关键制备材料出发,将柔性可降解压力传感器分为基于可降解聚合物基底的柔性压力传感器、基于可降解导电材料的柔性压力传感器以及基于聚合基底和导电材料双降解的柔性压力传感器,并对三类柔性可降解压力传感器的国内外研究进展进行了综述。首先,简单介绍了柔性可降解压力传感器关键制备材料的种类及传感器的制备过程;其次,对每种类型传感器的优缺点及应用领域进行了总结;最后,指出了柔性可降解压力传感器目前存在的问题及今后的发展趋势,以期为柔性可降解压力传感器的开发和应用提供参考。
中图分类号:
鲍艳, 郑茜, 郭茹月. 柔性可降解压力传感器关键制备材料的研究进展[J]. 化工进展, 2022, 41(7): 3624-3635.
BAO Yan, ZHENG Xi, GUO Ruyue. Recent progress of key materials for flexible degradable pressure sensors[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3624-3635.
导电材料 | 溶解产物 | 溶解速率/nm·h-1 | 影响因素 |
---|---|---|---|
Mg | Mg(OH)2 | 70 | 温度和pH |
Fe | Fe(OH)2/Fe(OH)3 | — | 温度和pH |
Zn | Zn(OH)2 | 7 | 温度和pH |
Mo | H2MoO4 | 0.3 | 温度和pH |
W | H2WO4 | 1.7 | 温度和pH |
Si | Si(OH)4 | 约0.04 | 晶体结构、温度和pH等 |
Ge | H2GeO3 | 约0.08 | 晶体结构、温度和pH等 |
GBMs | CO2和H2O | — | 层数、横向尺寸和C/O比 |
表1 用于制备柔性可降解压力传感器的导电材料[16]
导电材料 | 溶解产物 | 溶解速率/nm·h-1 | 影响因素 |
---|---|---|---|
Mg | Mg(OH)2 | 70 | 温度和pH |
Fe | Fe(OH)2/Fe(OH)3 | — | 温度和pH |
Zn | Zn(OH)2 | 7 | 温度和pH |
Mo | H2MoO4 | 0.3 | 温度和pH |
W | H2WO4 | 1.7 | 温度和pH |
Si | Si(OH)4 | 约0.04 | 晶体结构、温度和pH等 |
Ge | H2GeO3 | 约0.08 | 晶体结构、温度和pH等 |
GBMs | CO2和H2O | — | 层数、横向尺寸和C/O比 |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | 蚕丝 | 低薄层电阻(10.5Ω?m2)、高透光率(>90%)、优异稳定性(>2200次)和良好的延展性(>60%) | 浸入木瓜蛋白酶溶液中24h后,电极降解 | 可同时检测压力和应变信号,长期监测人体健康状态,如血压 | [ |
2 | β-Gly/CS | 工作范围宽(5~60kPa)、灵敏度高(2.8~2.84mV/kPa)、稳定性好(9000次) | 浸泡在PBS缓冲液中几分钟后开始降解 | 可作为一次性传感器用于体外监测,如监测压缩绷带下的压力 | [ |
3 | 纤维素 | 宽检测范围(≤40kPa)、灵敏度高(1.7~4.8kPa-1)、稳定性好(>900次)、快速响应(22ms) | — | 检测各种人体生理信号如呼吸、脉搏、语音识别等 | [ |
4 | 蛋白质 | 宽传感范围(高达39.3kPa)、高灵敏度(298.4kPa-1)、快速响应(7ms)、透气性好、稳定性好(10000次) | 浸泡在NaOH溶液中9天后,降解率达到50%,28天完全降解 | 监测人体各种生理信号,如脉搏、声音、膝盖弯曲 | [ |
5 | 纤维素和明胶 | 宽应变范围(0~140%)、高灵敏度(GF=12.5)、稳定性好(3000次) | — | 检测人体各种运动,如呼吸、脉搏、手指弯曲等,具有人机界面交互特点 | [ |
表2 基于天然聚合物基底的柔性可降解压力传感器的性能特点及应用范围
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | 蚕丝 | 低薄层电阻(10.5Ω?m2)、高透光率(>90%)、优异稳定性(>2200次)和良好的延展性(>60%) | 浸入木瓜蛋白酶溶液中24h后,电极降解 | 可同时检测压力和应变信号,长期监测人体健康状态,如血压 | [ |
2 | β-Gly/CS | 工作范围宽(5~60kPa)、灵敏度高(2.8~2.84mV/kPa)、稳定性好(9000次) | 浸泡在PBS缓冲液中几分钟后开始降解 | 可作为一次性传感器用于体外监测,如监测压缩绷带下的压力 | [ |
3 | 纤维素 | 宽检测范围(≤40kPa)、灵敏度高(1.7~4.8kPa-1)、稳定性好(>900次)、快速响应(22ms) | — | 检测各种人体生理信号如呼吸、脉搏、语音识别等 | [ |
4 | 蛋白质 | 宽传感范围(高达39.3kPa)、高灵敏度(298.4kPa-1)、快速响应(7ms)、透气性好、稳定性好(10000次) | 浸泡在NaOH溶液中9天后,降解率达到50%,28天完全降解 | 监测人体各种生理信号,如脉搏、声音、膝盖弯曲 | [ |
5 | 纤维素和明胶 | 宽应变范围(0~140%)、高灵敏度(GF=12.5)、稳定性好(3000次) | — | 检测人体各种运动,如呼吸、脉搏、手指弯曲等,具有人机界面交互特点 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS | 灵敏度高(0.09~8.2kPa-1),检测限低(100Pa),稳定性好(>200000次)、响应时间短(≤20ms) | 浸入PBS缓冲液后8周完全降解 | 可用于人工智能、个性化医疗和康复设备、人体状况监控设备 | [ |
2 | PLA | 灵敏度高、检测限低(10.2Pa)、工作范围宽(<30kPa)、响应时间短(11ms)、功耗低(8~10W)、稳定性好(10000次) | 浸入PBS溶液中1天后开始降解,14天降解完成 | 可用于预测患者的健康状态,且可作为电子皮肤来映射触觉刺激 | [ |
3 | PVA | 高灵敏度度[5.5kPa-1 (0~30kPa)和1.5kPa-1(30~250kPa)]、响应时间快(70.4ms)、稳定性高(20000次) | — | 临床可穿戴设备和人造电子皮肤 | [ |
4 | 聚丙烯酸(PAA) | 高度拉伸(断裂伸长率450%)、响应时间快(20ms)、快速自愈性(0.2s)及良好降解性 | 室温下浸泡在磷酸PBS缓冲盐溶液中65天降解 | 检测人体运动,且可无线监测电生理信号,如肌电图和心电图信号 | [ |
表3 基于合成聚合物基底的柔性可降解压力传感器的性能特点及应用范围
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS | 灵敏度高(0.09~8.2kPa-1),检测限低(100Pa),稳定性好(>200000次)、响应时间短(≤20ms) | 浸入PBS缓冲液后8周完全降解 | 可用于人工智能、个性化医疗和康复设备、人体状况监控设备 | [ |
2 | PLA | 灵敏度高、检测限低(10.2Pa)、工作范围宽(<30kPa)、响应时间短(11ms)、功耗低(8~10W)、稳定性好(10000次) | 浸入PBS溶液中1天后开始降解,14天降解完成 | 可用于预测患者的健康状态,且可作为电子皮肤来映射触觉刺激 | [ |
3 | PVA | 高灵敏度度[5.5kPa-1 (0~30kPa)和1.5kPa-1(30~250kPa)]、响应时间快(70.4ms)、稳定性高(20000次) | — | 临床可穿戴设备和人造电子皮肤 | [ |
4 | 聚丙烯酸(PAA) | 高度拉伸(断裂伸长率450%)、响应时间快(20ms)、快速自愈性(0.2s)及良好降解性 | 室温下浸泡在磷酸PBS缓冲盐溶液中65天降解 | 检测人体运动,且可无线监测电生理信号,如肌电图和心电图信号 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS、Mg、Fe | 工作压力范围宽(0~10kPa)、高灵敏度(0.04~0.9kPa-1)、稳定性好(8000次) | 浸泡在PBS溶液中发生降解 | 可用于人体健康监测,如心血管、脉搏、心脏 | [ |
2 | PGS、POMaC、PLLA及Mg电极 | 稳定性好(30000次)、低压灵敏度好(0.3~0.16kPa-1) | 浸泡在PBS后2~3周发生降解 | 检测小压力和应变,应用于生物医学,实时检测体内血压 | [ |
3 | MPF、GO | 拉伸强度高、稳定性好(20000次)、检测限低(<0.1%) | — | 检测人体微小表情及运动,例如,皱眉、眨眼等表情,手指、肘部、膝盖弯曲和跳跃 | [ |
4 | 纤维素、rGO | 宽工作压力范围(0.005~40kPa)、高灵敏度(143.41kPa-1)、快速响应时间和优异的耐久性(5000次)、且对氨气具有线性响应(灵敏度为0.036×106)、降解性 | 浸泡在0.5mol/L NaOH溶液中60天降解 | 用于监测各种人类活动,且可用作氨气传感器,监测周围环境 | [ |
表4 基于柔性聚合物基底和导电材料双降解的压力传感器的性能特点及应用范围
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS、Mg、Fe | 工作压力范围宽(0~10kPa)、高灵敏度(0.04~0.9kPa-1)、稳定性好(8000次) | 浸泡在PBS溶液中发生降解 | 可用于人体健康监测,如心血管、脉搏、心脏 | [ |
2 | PGS、POMaC、PLLA及Mg电极 | 稳定性好(30000次)、低压灵敏度好(0.3~0.16kPa-1) | 浸泡在PBS后2~3周发生降解 | 检测小压力和应变,应用于生物医学,实时检测体内血压 | [ |
3 | MPF、GO | 拉伸强度高、稳定性好(20000次)、检测限低(<0.1%) | — | 检测人体微小表情及运动,例如,皱眉、眨眼等表情,手指、肘部、膝盖弯曲和跳跃 | [ |
4 | 纤维素、rGO | 宽工作压力范围(0.005~40kPa)、高灵敏度(143.41kPa-1)、快速响应时间和优异的耐久性(5000次)、且对氨气具有线性响应(灵敏度为0.036×106)、降解性 | 浸泡在0.5mol/L NaOH溶液中60天降解 | 用于监测各种人类活动,且可用作氨气传感器,监测周围环境 | [ |
1 | 尹锐, 张瑞明, 张均, 等. 碳基柔性压阻式压力传感器研究进展[J]. 化工新型材料, 2021, 49(12): 223-226. |
YIN Rui, ZHANG Ruiming, ZHANG Jun, et al. Research progress on carbon-based flexible dielectric piezoresistive pressure sensor[J]. New Chemical Materials, 2021, 49(12): 223-226. | |
2 | 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10): 7-24. |
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 7-24. | |
3 | 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38(4): 649-661, 859. |
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensors based on two-dimensional conductive materials/flexible polymer composites[J]. Fine Chemicals, 2021, 38(4): 649-661, 859. | |
4 | 梁立容, 李宁, 魏爱香. 柔性可穿戴压力传感器的研究进展[J]. 应用化工, 2020, 49(10): 2645-2648. |
LIANG Lirong, LI Ning, WEI Aixiang. Progress in the research of flexible pressure sensor[J]. Applied Chemical Industry, 2020, 49(10): 2645-2648. | |
5 | 潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10): 1592-1607. |
PAN Zhaoying, MA Jianzhong, ZHANG Wenbo, et al. Flexible conductive polymer composites in strain sensors[J]. Progress in Chemistry, 2020, 32(10): 1592-1607. | |
6 | 董点点, 张静雯, 唐杰, 等. 基于天然高分子的导电材料制备及其在柔性传感器件中的应用[J]. 高分子学报, 2020, 51(8): 864-879. |
DONG Diandian, ZHANG Jingwen, TANG Jie, et al. Fabrication of conductive materials based on natural polymers and their application in flexible sensors[J]. Acta Polymerica Sinica, 2020, 51(8): 864-879. | |
7 | DAI Y, WU X Y, LIU Z S, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites B: Engineering, 2020, 200: 108263. |
8 | ZHAO Y, REN M N, SHANG Y, et al. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins[J]. Composites Science and Technology, 2020, 200: 108448. |
9 | IRIMIA-VLADU M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future[J]. Chemical Society Reviews, 2014, 43(2): 588-610. |
10 | BALDO T A, DE LIMA L F, MENDES L F, et al. Wearable and biodegradable sensors for clinical and environmental applications[J]. ACS Applied Electronic Materials, 2021, 3(1): 68-100. |
11 | KALAMBATE P K, RAO Z X, DHANJAI, et al. Electrochemical (bio) sensors go green[J]. Biosensors and Bioelectronics, 2020, 163: 112270. |
12 | LI G L, WEN D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies[J]. Journal of Materials Chemistry B, 2020, 8(16): 3423-3436. |
13 | 杨菊香, 张雅欣, 贾园, 等. 可降解高分子材料的制备及其降解机理[J]. 塑料, 2021, 50(2): 108-113. |
YANG Juxiang, ZHANG Yaxin, JIA Yuan, et al. Preparation of degradable composite and its application development[J]. Plastics, 2021, 50(2): 108-113. | |
14 | 孙飞. 生物降解高分子材料的研究和发展[J]. 中国石油和化工标准与质量, 2021, 41(2): 124-126. |
SUN Fei. Research and development of biodegradable polymer materials[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(2): 124-126. | |
15 | LI Y, CHEN W H, LU L H. Wearable and biodegradable sensors for human health monitoring[J]. ACS Applied Bio Materials, 2021, 4(1): 122-139. |
16 | HOSSEINI E S, DERVIN S, GANGULY P, et al. Biodegradable materials for sustainable health monitoring devices[J]. ACS Applied Bio Materials, 2021, 4(1): 163-194. |
17 | YU X W, SHOU W, MAHAJAN B K, et al. Materials, processes, and facile manufacturing for bioresorbable electronics: a review[J]. Advanced Materials, 2018, 30(28): 1707624. |
18 | PAL R K, FARGHALY A A, WANG C Z, et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors[J]. Biosensors and Bioelectronics, 2016, 81: 294-302. |
19 | BARI S S, CHATTERJEE A, MISHRA S. Biodegradable polymer nanocomposites: an overview[J]. Polymer Reviews, 2016, 56(2): 287-328. |
20 | BEKER L, MATSUHISA N, YOU I, et al. A bioinspired stretchable membrane-based compliance sensor[J]. PNAS, 2020, 117(21): 11314-11320. |
21 | CHOI Y S, KOO J, LEE Y J, et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics[J]. Advanced Functional Materials, 2020, 30(31): 2000941. |
22 | TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of poly(vinyl alcohol) and natural polymers[J]. Polymer Reviews, 2018, 58(2): 247-287. |
23 | MCMAHON S, BERTOLLO N, CEARBHAILL E D O, et al. Bio-resorbable polymer stents: a review of material progress and prospects[J]. Progress in Polymer Science, 2018, 83: 79-96. |
24 | 杨可欣, 张辉, 马博谋, 等. 天然高分子化合物与聚乳酸复合材料进展[J]. 塑料, 2021, 50(2): 93-98. |
YANG Kexin, ZHANG Hui, MA Bomou, et al. Progress in natural polymer/PLA composite[J]. Plastics, 2021, 50(2): 93-98. | |
25 | 张花. 基于天然高分子的柔性电子材料的制备与应用[D]. 西安: 西北大学, 2019. |
ZHANG Hua. Preparation and applications of flexible electronic materials based on natural polymers[D]. Xi'an: Northwest University, 2019. | |
26 | BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57. |
27 | LI C M, GUO C C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation[J]. Nature Reviews Materials, 2020, 5(1): 61-81. |
28 | GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533. |
29 | WU W W, HAICK H. Materials and wearable devices for autonomous monitoring of physiological markers[J]. Advanced Materials, 2018, 30(41): 1705024. |
30 | HAN W B, LEE J H, SHIN J W, et al. Advanced materials and systems for biodegradable, transient electronics[J]. Advanced Materials, 2020, 32(51): 2002211. |
31 | YIN L, CHENG H Y, MAO S M, et al. Transient electronics: dissolvable metals for transient electronics[J]. Advanced Functional Materials, 2014, 24(5): 644. |
32 | WANG L, GAO Y, DAI F Q, et al. Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 18013-18023. |
33 | HUANG S Y, ZHANG B C, SHAO Z B, et al. Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins[J]. Nano Letters, 2020, 20(4): 2478-2485. |
34 | MARTÍN C, KOSTARELOS K, PRATO M, et al. Biocompatibility and biodegradability of 2D materials: graphene and beyond[J]. Chemical Communications, 2019, 55(39): 5540-5546. |
35 | MA B J, MARTÍN C, KURAPATI R, et al. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials[J]. Chemical Society Reviews, 2020, 49(17): 6224-6247. |
36 | CHEN X, AHN J H. Biodegradable and bioabsorbable sensors based on two-dimensional materials[J]. Journal of Materials Chemistry B, 2020, 8(6): 1082-1092. |
37 | FEIG V R, TRAN H, BAO Z N. Biodegradable polymeric materials in degradable electronic devices[J]. ACS Central Science, 2018, 4(3): 337-348. |
38 | WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790. |
39 | MANJAKKAL L, DERVIN S, DAHIYA R. Correction: flexible potentiometric pH sensors for wearable systems[J]. RSC Advances, 2020, 10(22): 12734. |
40 | LI R F, WANG L, YIN L. Materials and devices for biodegradable and soft biomedical electronics[J]. Materials, 2018, 11(11): 2108. |
41 | LIU Q, LI K Q, ZHAO H, et al. The global challenge of electronic waste management[J]. Environmental Science and Pollution Research, 2009, 16(3): 248-249. |
42 | HWANG S W, SONG J K, HUANG X, et al. High-performance biodegradable/transient electronics on biodegradable polymers[J]. Advanced Materials, 2014, 26(23): 3905-3911. |
43 | LEI T, GUAN M, LIU J, et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics[J]. PNAS, 2017, 114(20): 5107-5112. |
44 | ZHANG S, ZHOU Z T, ZHONG J J, et al. Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment[J]. Advanced Science, 2020, 7(13): 1903802. |
45 | KOH L D, YEO J, LEE Y Y, et al. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing[J]. Materials Science and Engineering: C, 2018, 86: 151-172. |
46 | PAL R K, FARGHALY A A, COLLINSON M M, et al. Photolithographic micropatterning of conducting polymers on flexible silk matrices[J]. Advanced Materials, 2016, 28(7): 1406-1412. |
47 | LI S Y, LIU J R, WEN H, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703. |
48 | 李胜优, 刘镓榕, 文豪, 等. 蚕丝基可穿戴传感器的研究进展[J]. 物理学报, 2020, 69(17): 178703. |
LI Shengyou, LIU Jiarong, WEN Hao, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703. | |
49 | HOU C, XU Z J, QIU W, et al. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J]. Small, 2019, 15(11): 1805084. |
50 | HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9008-9016. |
51 | ELIEH-ALI-KOMI D, HAMBLIN M R. Chitin and chitosan: production and application of versatile biomedical nanomaterials[J]. International Journal of Advanced Research, 2016, 4(3): 411-427. |
52 | NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8/9): 762-798. |
53 | NEGM N A, ABUBSHAIT H A, ABUBSHAIT S A, et al. Performance of chitosan polymer as platform during sensors fabrication and sensing applications[J]. International Journal of Biological Macromolecules, 2020, 165: 402-435. |
54 | ZHANG N D, YIN X S, GONG H. Highly conductive and flexible transparent films based on silver nanowire/chitosan composite[J]. RSC Advances, 2016, 6(53): 47552-47561. |
55 | MIAO J L, LIU H H, LI Y B, et al. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23037-23047. |
56 | ZHU H L, XIAO Z G, LIU D T, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7): 2105. |
57 | 刘佳璇, 李群. 利用植物纤维制备生物可降解高分子复合材料的应用研究[J]. 天津造纸, 2020, 42(3): 22-26. |
LIU Jiaxuan, LI Qun. Application of biodegradable polymer composite materials made from plant fibers[J]. Tianjin Paper Making, 2020, 42(3): 22-26. | |
58 | LIU L P, JIAO Z B, ZHANG J Q, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1967-1978. |
59 | ZHAO P F, ZHANG R M, TONG Y H, et al. All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole[J]. Advanced Electronic Materials, 2020, 6(8): 1901426. |
60 | PARRILLA M, GUINOVART T, FERRÉ J, et al. A wearable paper-based sweat sensor for human perspiration monitoring[J]. Advanced Healthcare Materials, 2019, 8(16): 1900342. |
61 | GAO L, ZHU C X, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25034-25042. |
62 | LI W H, LIU Q, ZHANG Y N, et al. Biodegradable materials and green processing for green electronics[J]. Advanced Materials, 2020, 32(33): e2001591. |
63 | SONG R, MURPHY M, LI C S, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Design, Development and Therapy, 2018, 12: 3117-3145. |
64 | CHAO M, HE L, GONG M, et al. Breathable Ti3C2T x MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents[J]. ACS Nano, 2021, 15(6): 9746-9758. |
65 | MENG J J, PAN P, YANG Z C, et al. Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring[J]. Journal of Materials Science, 2020, 55(23): 10084-10094. |
66 | LING H, CHEN R W, HUANG Q B, et al. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing[J]. Green Chemistry, 2020, 22(10): 3208-3215. |
67 | SCHAUMANN E N, TIAN B Z. Biological interfaces, modulation, and sensing with inorganic nano-bioelectronic materials[J]. Small Methods, 2020, 4(5): 1900868. |
68 | GUO Y, ZHONG M J, FANG Z W, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150. |
69 | SENCADAS V, TAWK C, ALICI G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8761-8772. |
70 | SHARMA S, CHHETRY A, ZHANG S, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range[J]. ACS Nano, 2021, 15(3): 4380-4393. |
71 | LI X, HE L, LI Y, CHAO M, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773. |
72 | NAJAFABADI A H, TAMAYOL A, ANNABI N, et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics[J]. Advanced Materials, 2014, 26(33): 5823-5830. |
73 | JUNG Y H, ZHANG H L, GONG S Q, et al. High-performance green semiconductor devices: materials, designs, and fabrication[J]. Semiconductor Science and Technology, 2017, 32(6): 063002. |
74 | KENRY, LIU B. Recent advances in biodegradable conducting polymers and their biomedical applications[J]. Biomacromolecules, 2018, 19(6): 1783-1803. |
75 | BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018, 1(5): 314-321. |
76 | BOUTRY C M, NGUYEN A, LAWAL Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials, 2015, 27(43): 6954-6961. |
77 | LYU Z, LIU J Z, YANG X, et al. Naturally derived wearable strain sensors with enhanced mechanical properties and high sensitivity[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22163-22169. |
78 | ZHENG Shaodi, DU Ronghuan, WANG Ning, et al. Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor[J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106649. |
[1] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[2] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[3] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
[4] | 尹爽, 梁伟杰, 陈沛嘉, 张志聪, 葛建芳. 聚己二酸丁二醇酯-共对苯二甲酸酯基可降解塑料改性研究进展[J]. 化工进展, 2022, 41(S1): 307-317. |
[5] | 王志刚, 徐琴琴, 林润泽, 银建中, 柳宝林, 王启博. 基于银/石墨烯纳米复合材料的柔性压力传感器——材料制备和微纳结构构建[J]. 化工进展, 2021, 40(6): 3300-3313. |
[6] | 付凯妹, 王红秋, 慕彦君, 侯雨璇, 宋倩倩, 王春娇. 聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)生产技术现状及其研究进展[J]. 化工进展, 2021, 40(11): 6173-6180. |
[7] | 何崟, 周艺颖, 刘皓, 孙可可, 李晓久, 王晓云. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(07): 2664-2671. |
[8] | 鲁康伟,尹芳华,崔爱军,高建,袁希萌,叶东伟,陈群 . 乙酸铋催化乙交酯开环聚合的工艺[J]. 化工进展, 2014, 33(02): 395-399. |
[9] | 王泽云,崔爱军,陆卫良,陈 群,何明阳. 熔融/固相缩聚法制备聚乙醇酸甲酯的工艺条件优化[J]. 化工进展, 2012, 31(12): 2771-2774. |
[10] | 黄锦标1,尚龙安2. 聚羟基烷酸酯的生物合成研究进展 [J]. 化工进展, 2011, 30(9): 2041-. |
[11] | 张正光,罗学刚. 乙酸乙烯酯对魔芋葡甘聚糖的热塑改性 [J]. 化工进展, 2008, 27(4): 590-. |
[12] | 严乐平,吴 刚,王迎军. 聚β–羟基烷酸酯的改性研究进展 [J]. 化工进展, 2006, 25(11): 1266-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |