化工进展 ›› 2021, Vol. 40 ›› Issue (6): 2980-2992.DOI: 10.16085/j.issn.1000-6613.2020-1902
收稿日期:
2020-09-18
修回日期:
2020-12-31
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
张劲,卢善富
作者简介:
严文锐(1995—),女,博士研究生,研究方向为高温聚合物电解质膜燃料电池。E-mail:基金资助:
YAN Wenrui(), ZHANG Jin(), WANG Haining, LU Shanfu(), XIANG Yan
Received:
2020-09-18
Revised:
2020-12-31
Online:
2021-06-06
Published:
2021-06-22
Contact:
ZHANG Jin,LU Shanfu
摘要:
甲醇作为一种安全便捷的液态储氢燃料,具有高含氢量以及高体积能量密度,可经重整为富氢气后与燃料电池系统集成为重整甲醇高温聚合物电解质膜燃料电池,从而高效地将甲醇和氧气的化学能转变为电能。本文针对重整甲醇高温聚合物电解质膜燃料电池的不同类型(外置重整型和内置重整型),分别对其系统集成的实现与发展进行了总结,并介绍了其现阶段在军用和民用方面的应用情况,同时指出了技术研究与应用存在的瓶颈,并对未来的研究方向进行了展望。未来提升重整甲醇高温聚合物电解质膜燃料电池性能的努力在于开发低温工作的高效甲醇重整催化剂,以及高温稳定运行的聚合物电解质膜和非贵金属材料等燃料电池关键材料。
中图分类号:
严文锐, 张劲, 王海宁, 卢善富, 相艳. 重整甲醇高温聚合物电解质膜燃料电池研究进展与展望[J]. 化工进展, 2021, 40(6): 2980-2992.
YAN Wenrui, ZHANG Jin, WANG Haining, LU Shanfu, XIANG Yan. Advancement toward reforming methanol high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2980-2992.
1 | MIDILLI A, AY M, DINCER I, et al. On hydrogen and hydrogen energy strategiesⅠ:current status and needs[J]. Renewable and Sustainable Energy Reviews, 2005, 9(3): 255-271. |
2 | GOTTESFELD Shimshon, ZAWODZINSKI Tom A. Polymer electrolyte fuel cells[M]. Advances in Electrochemical Science and Engineering. New York: Wiley, 1997: 195-301. |
3 | NACEF M, AFFOUNE A M. Comparison between direct small molecular weight alcohols fuel cells’ and hydrogen fuel cell’s parameters at low and high temperature. Thermodynamic study[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4208-4219. |
4 | DEMIRCI U B. Direct liquid-feed fuel cells: thermodynamic and environmental concerns[J]. Journal of Power Sources, 2007, 169(2): 239-246. |
5 | YADAV M, XU Q. Liquid-phase chemical hydrogen storage materials[J]. Energy & Environmental Science, 2012, 5(12): 9698. |
6 | PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107(10): 3992-4021. |
7 | ALBERICO E, NIELSEN M. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol[J]. Chemical Communications, 2015, 51(31): 6714-6725. |
8 | OLAH G A. Towards oil independence through renewable methanol chemistry[J]. Angewandte Chemie, 2013, 52(1): 104-107. |
9 | SIMON ARAYA S, LISO V, CUI X T, et al. A review of the methanol economy: the fuel cell route[J]. Energies, 2020, 13(3): 596. |
10 | LI Q F, HE R H, GAO J A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599. |
11 | DAS S K, REIS A, BERRY K J. Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 193(2): 691-698. |
12 | CHENG Y, ZHANG J, LU S F, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200—250℃[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22487-22499. |
13 | RIBEIRINHA P, ALVES I, VÁZQUEZ F V, et al. Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell[J]. Energy, 2017, 120: 468-477. |
14 | THOMAS S, ARAYA S S, FRENSCH S H, et al. Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping[J]. Electrochimica Acta, 2019, 317: 521-527. |
15 | ZHANG J, AILI D, LU S F, et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020: 1-15. |
16 | ZHANG J, XIANG Y, LU S F, et al. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell-methanol reformer power systems: a critical review[J]. Advanced Sustainable Systems, 2018, 2(8/9): 1700184. |
17 | SARAPUU A, KIBENA-PÕLDSEPP E, BORGHEI M, et al. Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(3): 776-804. |
18 | HE Y, LIU S, PRIEST C, et al. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020, 49(11): 3484-3524. |
19 | LEVALLEY T L, RICHARD A R, FAN M H. The progress in water gas shift and steam reforming hydrogen production technologies—A review[J]. International Journal of Hydrogen Energy, 2014, 39(30): 16983-17000. |
20 | KOLB G. Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy[J]. Chemical Engineering and Processing: Process Intensification, 2013, 65: 1-44. |
21 | IULIANELLI A, RIBEIRINHA P, MENDES A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 355-368. |
22 | O’CONNELL M, KOLB G, SCHELHAAS K P, et al. Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: a review of recent progress at IMM[J]. Chemical Engineering Research and Design, 2012, 90(1): 11-18. |
23 | HOLLADAY J D, WANG Y, JONES E. Review of developments in portable hydrogen production using microreactor technology[J]. Chemical Reviews, 2004, 104(10): 4767-4789. |
24 | PAN C, HE R H, LI Q F, et al. Integration of high temperature PEM fuel cells with a methanol reformer[J]. Journal of Power Sources, 2005, 145(2): 392-398. |
25 | PATIL A S, DUBOIS T G, SIFER N, et al. Portable fuel cell systems for America’s army: technology transition to the field[J]. Journal of Power Sources, 2004, 136(2): 220-225. |
26 | BOSTIC E, SIFER N, DUBOIS T, et al. Fuel cell systems for the American warfighter[J]. Journal of Fuel Cell Science and Technology, 2004, 1(1): 69-72. |
27 | CHEEKATAMARLA P K, FINNERTY C M. Reforming catalysts for hydrogen generation in fuel cell applications[J]. Journal of Power Sources, 2006, 160(1): 490-499. |
28 | HOLLADAY J D, HU J, KING D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260. |
29 | HORNG R F, CHOU H M, LEE C H, et al. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer[J]. Journal of Power Sources, 2006, 161(2): 1225-1233. |
30 | 闫月君, 刘启斌, 隋军, 等. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工进展, 2012, 31(7): 1468-1476. |
YAN Yuejun, LIU Qibin, Jun SUI, et al. Research progress of hydrogen production with methanol steam reforming[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1468-1476. | |
31 | SAHLIN S L, ANDREASEN S J, KÆR S K. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13080-13089. |
32 | LWIN Y, DAUD W R W, MOHAMAD A B, et al. Hydrogen production from steam-methanol reforming: thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2000, 25(1): 47-53. |
33 | WANG J H, CHEN H, TIAN Y, et al. Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol[J]. Fuel, 2012, 97: 805-811. |
34 | FAUNGNAWAKIJ K, KIKUCHI R, EGUCHI K. Thermodynamic evaluation of methanol steam reforming for hydrogen production[J]. Journal of Power Sources, 2006, 161(1): 87-94. |
35 | WANG S, WANG S D. Thermodynamic equilibrium composition analysis of methanol autothermal reforming for proton exchanger membrane fuel cell based on FLUENT software[J]. Journal of Power Sources, 2008, 185(1): 451-458. |
36 | SUN Z, SUN Z Q. Hydrogen generation from methanol reforming for fuel cell applications: a review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
37 | MORILLO A, FREUND A, MERTEN C. Concept and design of a novel compact reactor for autothermal steam reforming with integrated evaporation and CO cleanup[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4624-4634. |
38 | MORILLO A, MERTEN C, EIGENBERGER G, et al. Kompaktes Faltreaktorkonzept zur autothermen Dampfreformierung mit integrierter Verdampfung und Shift-Stufe[J]. Chemie Ingenieur Technik, 2003, 75(12): 68-72. |
39 | GLÖCKLER B, GRITSCH A, MORILLO A, et al. Autothermal reactor concepts for endothermic fixed-bed reactions[J]. Chemical Engineering Research and Design, 2004, 82(2): 148-159. |
40 | WENG F, CHENG C K, CHEN K C. Hydrogen production of two-stage temperature steam reformer integrated with PBI membrane fuel cells to optimize thermal management[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6059-6064. |
41 | LOTRIČ A, SEKAVČNIK M, HOČEVAR S. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications[J]. Journal of Power Sources, 2014, 270: 166-182. |
42 | SPECCHIA S. Fuel processing activities at European level: a panoramic overview[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17953-17968. |
43 | JUSTESEN K K, ANDREASEN S J. Determination of optimal reformer temperature in a reformed methanol fuel cell system using ANFIS models and numerical optimization methods[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9505-9514. |
44 | JUSTESEN K K, ANDREASEN S J, PASUPATHI S, et al. Modeling and control of the output current of a reformed methanol fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16521-16531. |
45 | UltraCell redesigns XX55military RMFC portable system[J]. Fuel Cells Bulletin, 2013 (10): 5. |
46 | 明海, 邱景义, 祝夏雨, 等. 军用便携式燃料电池技术发展[J]. 电池, 2017, 47(6): 362-365. |
MING Hai, QIU Jingyi, ZHU Xiayu, et al. Development of military portable fuel cell technologies[J]. Battery Bimonthly, 2017, 47(6): 362-365. | |
47 | RENOUARD-VALLET G, SABALLUS M, SCHMITHALS G, et al. Improving the environmental impact of civil aircraft by fuel cell technology: concepts and technological progress[J]. Energy & Environmental Science, 2010, 3(10): 1458. |
48 | AVGOUROPOULOS G, PAXINOU A, NEOPHYTIDES S. In situ hydrogen utilization in an internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18103-18108. |
49 | AVGOUROPOULOS G, IOANNIDES T, KALLITSIS J K, et al. Development of an internal reforming alcohol fuel cell: concept, challenges and opportunities[J]. Chemical Engineering Journal, 2011, 176/177: 95-101. |
50 | AVGOUROPOULOS G, PAPAVASILIOU J, DALETOU M K, et al. Reforming methanol to electricity in a high temperature PEM fuel cell[J]. Applied Catalysis B: Environmental, 2009, 90(3/4): 628-632. |
51 | SANABRIA-CHINCHILLA J, ASAZAWA K, SAKAMOTO T, et al. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways[J]. Journal of the American Chemical Society, 2011, 133(14): 5425-5431. |
52 | AVGOUROPOULOS G, NEOPHYTIDES S G. Performance of internal reforming methanol fuel cell under various methanol/water concentrations[J]. Journal of Applied Electrochemistry, 2012, 42(9): 719-726. |
53 | SIMON ARAYA S, GRIGORAS I F, ZHOU F, et al. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18343-18350. |
54 | RIBEIRINHA P, SCHULLER G, BOAVENTURA M, et al. Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13902-13912. |
55 | SÁ S, SILVA H, BRANDÃO L, et al. Catalysts for methanol steam reforming—A review[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 43-57. |
56 | KALAMARAS I, DALETOU M K, NEOPHYTIDES S G, et al. Thermal crosslinking of aromatic polyethers bearing pyridine groups for use as high temperature polymer electrolytes[J]. Journal of Membrane Science, 2012, 415/416: 42-50. |
57 | PAPADIMITRIOU K D, PALOUKIS F, NEOPHYTIDES S G, et al. Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications[J]. Macromolecules, 2011, 44(12): 4942-4951. |
58 | MORFOPOULOU C I, ANDREOPOULOU A K, DALETOU M K, et al. Cross-linked high temperature polymer electrolytes through oxadiazole bond formation and their applications in HT PEMfuel cells[J]. J. Mater. Chem. A, 2013, 1(5): 1613-1622. |
59 | AILI D, HENKENSMEIER D, MARTIN S, et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. |
60 | QUARTARONE E, ANGIONI S, MUSTARELLI P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10(7): 687. |
61 | RATH R, KUMAR P, UNNIKRISHNAN L, et al. Current scenario of poly (2, 5-benzimidazole) (ABPBI) as prospective PEM for application in HT-PEMFC[J]. Polymer Reviews, 2020, 60(2): 267-317. |
62 | AILI D, ZHANG J, DALSGAARD JAKOBSEN M T, et al. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200℃[J]. Journal of Materials Chemistry A, 2016, 4(11): 4019-4024. |
63 | ZHANG J, AILI D, BRADLEY J, et al. In situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures[J]. Journal of the Electrochemical Society, 2017, 164(14): F1615-F1625. |
64 | CHENG Y, ZHANG J, LU S F, et al. Significantly enhanced performance of direct methanol fuel cells at elevated temperatures[J]. Journal of Power Sources, 2020, 450: 227620. |
65 | ATANASOV V, LEE A S, PARK E J, et al. Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells[J]. Nat. Mater., 2021, 20(3): 370-377. |
66 | 李永红, 任杰, 孙予罕. 低温高活性甲醇水蒸气重整制氢催化剂的研究[J]. 天然气化工, 2001, 26(1): 5-8. |
LI Yonghong, REN Jie, SUN Yuhan. Production of hydrogen from the low-temperature methanol-steam reforming[J]. Natural Gas Chemical Industry, 2001, 26(1): 5-8. | |
67 | TONG W Y, CHEUNG K, WEST A, et al. Direct methanol steam reforming to hydrogen over CuZnGaOxcatalysts without CO post-treatment: mechanistic considerations[J]. Physical Chemistry Chemical Physics, 2013, 15(19): 7240. |
68 | LIN L, ZHOU W, GAO R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
69 | SAMMS S R, SAVINELL R F. Kinetics of methanol-steam reformation in an internal reforming fuel cell[J]. Journal of Power Sources, 2002, 112(1): 13-29. |
70 | GEORMEZI M, PALOUKIS F, ORFANIDI A, et al. The structure and stability of the anodic electrochemical interface in a high temperature polymer electrolyte membrane fuel cell under reformate feed[J]. Journal of Power Sources, 2015, 285: 499-509. |
71 | AVGOUROPOULOS G, PAPAVASILIOU J, IOANNIDES T, et al. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2015, 296: 335-343. |
72 | PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. CuMnOx catalysts for internal reforming methanol fuel cells: application aspects[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16739-16747. |
73 | AVGOUROPOULOS G, SCHLICKER S, SCHELHAAS K P, et al. Performance evaluation of a proof-of-concept 70W internal reforming methanol fuel cell system[J]. Journal of Power Sources, 2016, 307: 875-882. |
74 | PAPAVASILIOU J, SCHÜTT C, KOLB G, et al. Technological aspects of an auxiliary power unit with internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12818-12828. |
75 | JI F, YANG L L, LI Y H, et al. Performance enhancement by optimizing the reformer for an internal reforming methanol fuel cell[J]. Energy Science & Engineering, 2019, 7(6): 2814-2824. |
76 | BOWERS B J, ZHAO J L, RUFFO M, et al. Onboard fuel processor for PEM fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1437-1442. |
77 | THAMPAN T, SHAH D, COOK C, et al. Development and evaluation of portable and wearable fuel cells for soldier use[J]. Journal of Power Sources, 2014, 259: 276-281. |
78 | CHENG Y, HE S, LU S F, et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells[J]. Advanced Science, 2019, 6(10): 1802066. |
79 | YAN W R, XIANG Y, ZHANG J, et al. Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures[J]. Advanced Sustainable Systems, 2020, 4(7): 2000065. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[5] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[6] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[7] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[8] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[9] | 赵路军, 祁雨奇, 邵嘉铭, 褚健, 王智化, 冯毅萍. 流程工业智能制造准备度模型及应用实践[J]. 化工进展, 2023, 42(1): 118-127. |
[10] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[11] | 李炜, 阮成龙, 王晓明, 李亚洁, 梁成龙. 罐式批次成品汽油调和配方集成建模方法[J]. 化工进展, 2022, 41(9): 4701-4712. |
[12] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[13] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[14] | 张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621. |
[15] | 储根云, 范英杰, 张大伟, 高明林, 梅树美, 杨庆春. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |