化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4701-4712.DOI: 10.16085/j.issn.1000-6613.2021-2262

• 化工过程与装备 • 上一篇    下一篇

罐式批次成品汽油调和配方集成建模方法

李炜1,2,3(), 阮成龙1,2,3(), 王晓明1,2,3, 李亚洁1,2,3, 梁成龙4   

  1. 1.兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
    2.甘肃省工业过程先进控制重点实验室,甘肃 兰州 730050
    3.兰州理工大学电气与控制工程国家级实验教学示范中心,甘肃 兰州 730050
    4.中国石化兰州石化分公司油品储运厂,甘肃 兰州 730060
  • 收稿日期:2021-11-05 修回日期:2021-12-16 出版日期:2022-09-25 发布日期:2022-09-27
  • 通讯作者: 阮成龙
  • 作者简介:李炜(1963—),女,硕士,教授,研究方向为复杂系统建模、故障诊断与容错控制、寿命预测与延寿控制。E-mail:liwei@lut.edu.cn
  • 基金资助:
    甘肃省青年博士基金(2021QB-044)

Integrated modelling method for tank-batch finished gasoline blending formulations

LI Wei1,2,3(), RUAN Chenglong1,2,3(), WANG Xiaoming1,2,3, LI Yajie1,2,3, LIANG Chenglong4   

  1. 1.College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, Gansu, China
    3.National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    4.Oil Storage and Transportation Plant, Petrochina Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
  • Received:2021-11-05 Revised:2021-12-16 Online:2022-09-25 Published:2022-09-27
  • Contact: RUAN Chenglong

摘要:

考虑罐式批次成品汽油调和过程中罐底余油对产品质量指标的影响,本文提出了一种基于改进多核模糊C均值(multi-kernel fuzzy C-means,MKFCM)与极端梯度提升树(extreme gradient boosting,XGBoost)集成的成品汽油调和的通用配方建模方法。该方法首先考虑各调和组分的差异性,提出一种自适应核参数计算方法对MKFCM改进,并将其用于罐底油聚类分析,旨在最大程度划分出性质相近的罐底油批次类型;在此基础上择优选用XGBoost算法,以各批次罐底余油的组分比例和产品预期质量指标作为输入,建立各批次子配方模型;在配方生成时,基于改进MKFCM求得当前罐底余油的隶属度向量,并以此为权值对子配方模型进行加权融合,最终以多模型集成的方式得到了成品汽油调和的通用配方。经使用某企业实际工业数据进行实验分析,结果表明,较单一模型或未改进MKFCM的集成模型,基于改进MKFCM-XGBoost的多模型集成配方,预测精度和泛化能力均更优,更适合罐式批次成品汽油调和过程。

关键词: 调和配方, 预测, 改进多核模糊C均值, 极端梯度提升树, 集成, 罐底油, 优化

Abstract:

During the blending process of tank batches of finished gasoline,an integrated modeling method for finished gasoline blending general formula was proposed by considering the influence of the remaining oil at the bottom of the tank on product quality indicators, which based on an improved multi-kernel fuzzy C-means (MKFCM) and an extreme gradient boosting tree (XGBoost). Firstly, considering the differences of the blending components, an adaptive kernel parameter calculation method was presented to improve MKFCM, and then it was used for tank bottom oil cluster analysis in order to classify tank bottom oils with similar properties to the greatest extent batch-type. Secondly, XGBoost algorithm was selected on this basis. The sub-formulation model of each batch was established by taking the component proportion of residual oil at the bottom of each batch of tank and the expected quality index of the product as the input. When generating the formula, the membership vector of the current tank bottom residual oil was obtained based on the improved MKFCM and the above membership vectors were used to weight and fuse the sub formula model. Finally, the blended general formula of finished gasoline was obtained by multi-model integration. The experimental analysis by using the actual industrial data of an enterprise showed that compared with a single model or an integrated model without the improved MKFCM, the multi-model integrated formula based on the improved MKFCM-XGBoost possessed better prediction accuracy and generalization ability, and it was more suitable for tank type process of blending batches of finished gasoline.

Key words: blending formula, prediction, improve MKFCM, extreme gradient boosting (XGBoost), integration, remaining oil at the bottom of the tank, optimization

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn