1 |
李星局. 输气管道线路截断阀控制逻辑与阈值研究[D]. 北京: 中国石油大学(北京), 2019.
|
|
LI Xingju. Research on control logic and threshold of automatic block valves in gas pipelines[D]. Beijing: China University of Petroleum (Beijing), 2019.
|
2 |
吴家勇, 李海娜, 王立坤, 等. 管道泄漏监测系统的性能评价指标[J]. 油气储运, 2017, 36(2): 209-213.
|
|
WU Jiayong, LI Haina, WANG Likun, et al. Performance evaluation indices of pipeline leak monitoring systems[J]. Oil & Gas Storage and Transportation, 2017, 36(2): 209-213.
|
3 |
ZUO Lili, JIANG Fangmei, JIN Bin, et al. Value setting for the rate of pressure drop of automatic line-break control valves in natural gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 803-809.
|
4 |
杨毅, 向敏, 孙晓波, 等. 输气管道泄漏后截断阀压降速率计算分析[J]. 油气田地面工程, 2020, 39(1): 40-44.
|
|
YANG Yi, XIANG Min, SUN Xiaobo, et al. Calculation and analysis of pressure drop rate of block valve after leakage of gas transmission pipeline[J]. Oil-Gas Field Surface Engineering, 2020, 39(1): 40-44.
|
5 |
赫德明, 郑洪峰, 徐华龙, 等. 输气管道气液联动执行机构压降速率设定值与持续时间的研究[J]. 现代化工, 2016, 36(2): 194-196, 198.
|
|
HE Deming, ZHENG Hongfeng, XU Hualong, et al. Setting value and duration of pressure drop rate of pneumatic-hydraulic actuator[J]. Modern Chemical Industry, 2016, 36(2): 194-196, 198.
|
6 |
廖钰朋, 贾文龙, 赵雯嘉, 等. 往复式压缩机抽吸工况下储气库注采干线压降速率研究[J]. 管道技术与设备, 2021(4): 1-5.
|
|
LIAO Yupeng, JIA Wenlong, ZHAO Wenjia, et al. Study on pressure drop rate of main line of gas reservoir injection and production under pumping condition of reciprocating compressor[J]. Pipeline Technique and Equipment, 2021(4): 1-5.
|
7 |
孟令雅, 李玉星, 宋立群, 等. 输气管道泄漏音波传播特性及监测定位[J]. 天然气工业, 2010, 30(11): 74-79, 123.
|
|
MENG Lingya, LI Yuxing, SONG Liqun, et al. Acoustic propagation characteristics, position monitoring and locating of gas transmission pipeline leakage[J]. Natural Gas Industry, 2010, 30(11): 74-79, 123.
|
8 |
焦敬品, 李勇强, 吴斌, 等. 基于BP神经网络的管道泄漏声信号识别方法研究[J]. 仪器仪表学报, 2016, 37(11): 2588-2596.
|
|
JIAO Jingpin, LI Yongqiang, WU Bin, et al. Research on acoustic signal recognition method for pipeline leakage with BP neural network[J]. Chinese Journal of Scientific Instrument, 2016, 37(11): 2588-2596.
|
9 |
张瑞程, 王新颖, 胡磊磊, 等. 基于一维卷积神经网络的燃气管道泄漏声发射信号识别[J]. 中国安全生产科学技术, 2021, 17(2): 104-109.
|
|
ZHANG Ruicheng, WANG Xinying, HU Leilei, et al. Acoustic emission signal identification of gas pipeline leakage based on one-dimensional convolution neural network[J]. Journal of Safety Science and Technology, 2021, 17(2): 104-109.
|
10 |
郝永梅, 杜璋昊, 杨文斌, 等. 基于改进ELMD和多尺度熵的管道泄漏信号识别[J]. 中国安全科学学报, 2019, 29(8): 105-111.
|
|
HAO Yongmei, DU Zhanghao, YANG Wenbin, et al. Pipeline leakage signal identification based on improved ELMD and multi-scale entropy[J]. China Safety Science Journal, 2019, 29(8): 105-111.
|
11 |
逯雯雯. 基于改进EMD和SVM的输油管道泄漏信号处理方法研究[D]. 东营: 中国石油大学(华东), 2019.
|
|
LU Wenwen. Research on oil pipeline leakage signal processing method based on improved EMD and SVM[D]. Dongying: China University of Petroleum (Huadong), 2019.
|
12 |
NING Fangli, CHENG Zhanghong, MENG Di, et al. Enhanced spectrum convolutional neural architecture: an intelligent leak detection method for gas pipeline[J]. Process Safety and Environmental Protection, 2021, 146: 726-735.
|
13 |
ZADKARAMI M, SHAHBAZIAN M, SALAHSHOOR K. Pipeline leak diagnosis based on wavelet and statistical features using Dempster-Shafer classifier fusion technique[J]. Process Safety and Environmental Protection, 2017, 105: 156-163.
|
14 |
LI Zhenlin, ZHANG Haifeng, TAN Dongjie, et al. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve[J]. Process Safety and Environmental Protection, 2017, 105: 32-40.
|
15 |
LIU Cuiwei, LI Yuxing, FANG Liping, et al. Experimental study on a de-noising system for gas and oil pipelines based on an acoustic leak detection and location method[J]. International Journal of Pressure Vessels and Piping, 2017, 151: 20-34.
|
16 |
DIAO Xu, JIANG Juncheng, SHEN Guodong, et al. An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines[J]. Mechanical Systems and Signal Processing, 2020, 143: 106787.
|
17 |
王明达, 韦永健, 王建军, 等. 基于SVM-BN的天然气长输管道燃气轮机故障预警方法研究[J]. 天然气工业, 2017, 37(11): 112-118.
|
|
WANG Mingda, WEI Yongjian, WANG Jianjun, et al. A SVM-BN based early warning method for gas turbines of natural gas long-distance pipelines[J]. Natural Gas Industry, 2017, 37(11): 112-118.
|
18 |
孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(4): 92-101.
|
|
SUN Fengshan, FAN Mengbao, CAO Binghua, et al. The terahertz image enhancement model based on adaptive teaching-learning based optimization algorithm with chaotic mapping and differential evolution[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 92-101.
|
19 |
盛晓晨, 史旭东, 熊伟丽. 改进粒子群优化的极限学习机软测量建模方法[J]. 计算机应用研究, 2020, 37(6): 1683-1687.
|
|
SHENG Xiaochen, SHI Xudong, XIONG Weili. Soft sensor modeling of extreme learning machine based on improved particle swarm optimization[J]. Application Research of Computers, 2020, 37(6): 1683-1687.
|
20 |
敖永才, 师奕兵, 张伟, 等. 自适应惯性权重的改进粒子群算法[J]. 电子科技大学学报, 2014, 43(6): 874-880.
|
|
AO Yongcai, SHI Yibing, ZHANG Wei, et al. Improved particle swarm optimization with adaptive inertia weight[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6): 874-880.
|