化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4723-4732.DOI: 10.16085/j.issn.1000-6613.2021-2356
韩轩1(), 王丽红1,2,3(), 柏雪源1,2,3, 易维明2,3, 李永军1,2,3, 李志合1,2,3, 张安东1,2,3
收稿日期:
2021-11-17
修回日期:
2022-01-06
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
王丽红
作者简介:
韩轩(1997—),男,硕士研究生,研究方向为生物质热解。E-mail: 1203582978@qq.com。
基金资助:
HAN Xuan1(), WANG Lihong1,2,3(), BAI Xueyuan1,2,3, YI Weiming2,3, LI Yongjun1,2,3, LI Zhihe1,2,3, ZHANG Andong1,2,3
Received:
2021-11-17
Revised:
2022-01-06
Online:
2022-09-25
Published:
2022-09-27
Contact:
WANG Lihong
摘要:
赤泥含有具有催化作用的元素,同时含有一定的孔,可用作催化剂。赤泥的强碱性导致催化剂表面烧结、酸性不足等问题。该研究采用柠檬酸交换钠及焙烧制备了脱碱赤泥催化剂,赤泥的脱碱率达到96%。表征发现脱碱赤泥结构更稳定,硅铝酸盐聚合度降低,Al、Fe、Ti等具有催化作用的元素含量增加、比表面积增加、中强酸酸性位点增多等。用于催化秸秆热解,产物生物油中醛类、酚类、呋喃类变化明显,其中2,3-二氢呋喃含量增加了15.9倍。脱碱赤泥对生物油的产率影响较小,不可冷凝气体、生物炭产率变化明显。推断与脱碱赤泥促进了脱羟和脱羰基反应、葡萄糖脱水重排,强化了脱甲基和脱甲氧基反应有关。
中图分类号:
韩轩, 王丽红, 柏雪源, 易维明, 李永军, 李志合, 张安东. 脱碱赤泥催化剂制备及对秸秆催化热解生物油成分的影响[J]. 化工进展, 2022, 41(9): 4723-4732.
HAN Xuan, WANG Lihong, BAI Xueyuan, YI Weiming, LI Yongjun, LI Zhihe, ZHANG Andong. Preparation of dealkalized red mud catalysts and its effect on bio-oil composition of corn straw catalytic pyrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4723-4732.
工业分析 | 元素分析 | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O | N | |
8.31% | 9.25% | 66.19% | 16.25% | 45.05% | 4.4% | 49.53% | 1.02% |
表1 玉米秸秆的工业分析和元素分析
工业分析 | 元素分析 | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O | N | |
8.31% | 9.25% | 66.19% | 16.25% | 45.05% | 4.4% | 49.53% | 1.02% |
样品 | 质量分数/% | |||||
---|---|---|---|---|---|---|
Al2O3 | Na2O | Fe2O3 | TiO2 | CaO | SiO2 | |
RM | 27.44 | 10.76 | 35.06 | 4.89 | 2.06 | 17.50 |
ACRM | 26.84 | 0.44 | 51.92 | 6.85 | 0.21 | 12.21 |
BRM | 25.29 | 4.46 | 41.35 | 5.71 | 0.99 | 20.48 |
表2 赤泥中的主要化学成分
样品 | 质量分数/% | |||||
---|---|---|---|---|---|---|
Al2O3 | Na2O | Fe2O3 | TiO2 | CaO | SiO2 | |
RM | 27.44 | 10.76 | 35.06 | 4.89 | 2.06 | 17.50 |
ACRM | 26.84 | 0.44 | 51.92 | 6.85 | 0.21 | 12.21 |
BRM | 25.29 | 4.46 | 41.35 | 5.71 | 0.99 | 20.48 |
1 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
2 | LU Qiuxiang, YUAN Shenfu, LIU Chunxiang, et al. A Fe-Ca/SiO2 catalyst for efficient production of light aromatics from catalytic pyrolysis of biomass[J]. Fuel, 2020, 279: 118500. |
3 | SUN Tanglei, LI Zaifeng, ZHANG Zhiping, et al. Fast corn stalk pyrolysis and the influence of catalysts on product distribution[J]. Bioresource Technology, 2020, 301: 122739. |
4 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
5 | FERNANDEZ Enara, SANTAMARIA Laura, ARTETXE Maite, et al. In line upgrading of biomass fast pyrolysis products using low-cost catalysts[J]. Fuel, 2021, 296: 120682. |
6 | HU Xun, GHOLIZADEH Mortaza. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
7 | SUSHIL Snigdha, BATRA Vidya S. Catalytic applications of red mud, an aluminium industry waste: a review[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 64-77. |
8 | 张淑梅,王允圃,夏美玲,等. 生物质双级催化热解制备燃料化学品的研究进展 [J]. 化工进展, 2021, 40(5): 2496-2508. |
ZHANG Shumei, WANG Yunpu, XIA Meiling, et al. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508. | |
9 | OCHOA Aitor, BILBAO Javier, GAYUBO Ana G, et al. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109600. |
10 | Donghoon RO, SHAFAGHAT Hoda, JANG Seong-Ho, et al. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer[J]. Environmental Research, 2019, 172: 658-664. |
11 | 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. |
LI Bin, ZHANG Baohua, NING Ping, et al. Present status and prospect of red mud resource utilization and safety treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 714-723. | |
12 | 罗丹, 李紫龙, 杜秋, 等. 赤泥综合利用研究进展[J]. 科技创新与应用, 2020(15): 75-76. |
LUO Dan, LI Zilong, DU Qiu, et al. Research progress on comprehensive utilization of red mud[J]. Technology Innovation and Application, 2020(15): 75-76. | |
13 | 许美丽, 王绍庆, 王丽红, 等. 碱性催化剂催化热解的生物油特性分析[J]. 山东理工大学学报(自然科学版), 2016, 30(4): 15-19. |
XU Meili, WANG Shaoqing, WANG Lihong, et al. Analysis of the characterization of bio-oil pyrolyzed by online catalystic pyrolysis over base catalysts[J]. Journal of Shandong University of Technology (Natural Science Edition), 2016, 30(4): 15-19. | |
14 | 王一青, 王丽红, 张安东, 等. 赤泥对玉米秸秆催化热解生物油的影响规律研究[J]. 生物质化学工程, 2020, 54(3): 18-24. |
WANG Yiqing, WANG Lihong, ZHANG Andong, et al. Effect of red mud on bio-oil from catalytic pyrolysis of corn straw[J]. Biomass Chemical Engineering, 2020, 54(3): 18-24. | |
15 | 王绍庆, 李志合, 易维明, 等. 活化赤泥催化热解玉米芯木质素制备高值单酚[J]. 农业工程学报, 2020, 36(13): 203-211. |
WANG Shaoqing, LI Zhihe, YI Weiming, et al. Catalytic pyrolysis of maize cob lignin over activated red mud catalyst for value-added mono-phenol production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 203-211. | |
16 | Hoang Vu LY, PARK Jeong Woo, KIM Seung Soo, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445. |
17 | KOUMANOVA B, DRAME M, POPANGELOVA M. Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer’s process[J]. Resources, Conservation and Recycling, 1997, 19(1): 11-20. |
18 | Salvador ORDÓÑEZ, SASTRE Herminio, Dı́EZ Fernando V. Characterisation and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene[J]. Applied Catalysis B: Environmental, 2001, 29(4): 263-273. |
19 | ZOU Xianwu, YAO Jianzhong, YANG Xuemin, et al. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy & Fuels, 2007, 21(2): 619-624. |
20 | 王芝成, 路坊海, 谷晓斐, 等. 赤泥脱碱的研究现状[J]. 贵州农机化, 2020(2): 15-18. |
WANG Zhicheng, LU Fanghai, GU Xiaofei, et al. Research status of dealkalization of red mud[J]. Guizhou Agricultural Mechaniation, 2020(2): 15-18. | |
21 | 张成林, 王家伟, 刘华龙, 等. 赤泥脱碱技术研究现状与进展[J]. 矿产综合利用, 2014(2): 11-14, 36. |
ZHANG Chenglin, WANG Jiawei, LIU Hualong, et al. Research advance and status quo of dealkalization of red mud[J]. Multipurpose Utilization of Mineral Resources, 2014(2): 11-14, 36. | |
22 | 张毅, 莫皓然. 赤泥脱碱技术研究进展[J]. 中国有色冶金, 2019, 48(2): 26-29, 33. |
ZHANG Yi, MO Haoran. Research progress on dealkalization technology for red mud[J]. China Nonferrous Metallurgy, 2019, 48(2): 26-29, 33. | |
23 | ZHU Xiaobo, LI Wang, ZHAO Heng, et al. Selective dealkalization of red mud using calcium oxide with pressure leaching[J]. JOM, 2018, 70(12): 2800-2806. |
24 | WANG Yanxiu, ZHANG Tingan, Guozhi LYU, et al. Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue[J]. Journal of Cleaner Production, 2018, 188: 456-465. |
25 | LI Wang, ZHU Xiaobo, TANG Shen. Selective separation of sodium from red mud with citric acid leaching[J]. Separation Science and Technology, 2017, 52(11): 1876-1884. |
26 | 刘少名. 赤泥的综合利用[D]. 沈阳:东北大学, 2011. |
LIU Shaoming. Comprehensive utilization of red mud[D]. Shenyang:Northeastern University, 2011. | |
27 | LUGER S, FELSCHE J, FISCHER P. Structure of hydroxysodalite Na8[AlSiO4]6(OH)2, a powder neutron diffraction study at 8K[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1987, 43(1): 1-3. |
28 | 谢襄漓, 郭威敏, 王林江. 广西平果拜尔法赤泥热物理性能与热处理过程中的物相变化特征[J]. 矿物学报, 2012, 32(S1): 118-119. |
XIE Xiangli, GUO Weimin, WANG Linjiang. Thermophysical properties and phase change characteristics of guangxi pingguo bayer red mud during heat treatment[J]. Acta Mineralogica Sinica, 2012, 32(S1): 118-119. | |
29 | 李丰义. 低分子量有机酸对土壤氧化铁形成与稳定性的影响[D]. 武汉: 华中农业大学, 2017. |
LI Fengyi. Effect of low molecular weight organic acids on the transformation and stability of iron oxides in soil[D]. Wuhan: Huazhong Agricultural University, 2017. | |
30 | 王新, 雷廷宙, 李在峰, 等. 烘焙预处理对玉米秸秆结构和组分的影响[J]. 河南科学, 2021, 39(11): 1726-1732. |
WANG Xin, LEI Tingzhou, LI Zaifeng, et al. Effect of torrefaction pretreatment on the structure and composition of corn straw[J]. Henan Science, 2021, 39(11): 1726-1732. | |
31 | 钟晨, 夏举佩. 拜耳法赤泥中Na+的浸出实验研究[J]. 硅酸盐通报, 2013, 32(10): 2012-2015. |
ZHONG Chen, XIA Jupei. Study on leaching Na+ in red mud from bayer process[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2012-2015. | |
32 | 牛雪莲, 冯向鹏, 孙恒虎, 等. 拜尔法赤泥热蚀变活性优化研究[J]. 材料导报, 2008, 22(S1): 382-384. |
NIU Xuelian, FENG Xiangpeng, SUN Henghu, et al. Study on optimizing activity of red mud using hydrothermal alteration principle[J]. Materials Review, 2008, 22(S1): 382-384. | |
33 | 冯向鹏, 张娜, 孙恒虎, 等. 用赤泥提高铁尾矿热活化性能的试验研究[J]. 金属矿山, 2007(10): 132-136. |
FENG Xiangpeng, ZHANG Na, SUN Henghu, et al. Study on heat-activation property of iron tailing by red mud[J]. Metal Mine, 2007(10): 132-136. | |
34 | 海然, 王帅旗, 刘盼, 等. 热活化温度对氧化铝赤泥反应活性的影响及机理研究[J]. 无机盐工业, 2019, 51(9): 72-75. |
Ran HAI, WANG Shuaiqi, LIU Pan, et al. Effect of thermal activated temperature on activation and mechanism of red mud from alumina production[J]. Inorganic Chemicals Industry, 2019, 51(9): 72-75. | |
35 | CASTALDI Paola, SILVETTI Margherita, SANTONA Laura, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. |
36 | 刘晓明, 孙恒虎, 冯向鹏, 等. 赤泥最佳热处理工艺制度研究[J]. 稀有金属材料与工程, 2007, 36(S1): 983-986. |
LIU Xiaoming, SUN Henghu, FENG Xiangpeng, et al. Study on the thermal activation technics of red mud[J]. Rare Metal Materials and Engineering, 2007, 36(S1): 983-986. | |
37 | 刘世丰, 刘世鸿, 曾建民. 热处理赤泥的物相及粒径和比表面积[J]. 矿产综合利用, 2020(5): 169-178. |
LIU Shifeng, LIU Shihong, ZENG Jianmin. Phase, particle size and specific surface area of heat-treated red mud[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 169-178. | |
38 | CAO Jianliang, YAN Zhaoli, DENG Qingfang, et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5747-5755. |
39 | ROMBI E, FERINO I, MONACI R, et al. Toluene ammoxidation on α-Fe2O3-based catalysts[J]. Applied Catalysis A: General, 2004, 266(1): 73-79. |
40 | YATHAVAN Bhuvanesh K, AGBLEVOR F A. Catalytic pyrolysis of pinyon-juniper using red mud and HZSM-5[J]. Energy & Fuels, 2013, 27(11): 6858-6865. |
41 | LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and red mud[J]. Applied Catalysis B: Environmental, 2011, 104(3/4): 211-219. |
42 | ZHANG Qiulin, ZHANG Yaqing, ZHANG Tengxiang, et al. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: the active sites and reaction mechanism[J]. Applied Surface Science, 2020, 503: 144190. |
43 | WANG Peng, SUN Hong, QUAN Xie, et al. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO x with NH₃ at low temperature[J]. Journal of Hazardous Materials, 2016, 301: 512-521. |
44 | LIU Tianlong, CAO Jingpei, ZHAO Xiaoyan, et al. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Processing Technology, 2017, 160: 19-26. |
45 | Xiaoyien LIM, SANNA Aimaro, ANDRÉSEN John M. Influence of red mud impregnation on the pyrolysis of oil palm biomass-EFB[J]. Fuel, 2014, 119: 259-265. |
46 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
HU Erfeng, ZHAO Lixin, WU Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
47 | 陈怡欣. 生物质催化热解制备芳烃类产物的研究[D]. 合肥: 中国科学技术大学, 2015. |
CHEN Yixin. Research on arenes production from biomass fast catalytic pyrolysis[D]. Hefei: University of Science and Technology of China, 2015. | |
48 | CAI Junmeng, RAHMAN Md Maksudur, ZHANG Shukai, et al. Review on aging of bio-oil from biomass pyrolysis and strategy to slowing aging[J]. Energy & Fuels, 2021, 35(15): 11665-11692. |
49 | GUPTA Jyoti, PAPADIKIS Konstantinos, KOZHEVNIKOV Ivan V, et al. Exploring the potential of red mud and beechwood co-processing for the upgrading of fast pyrolysis vapours[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 35-43. |
50 | 李姗姗. 金属催化生物质热解制备高值化学品的研究[D]. 合肥: 中国科学技术大学, 2021. |
LI Shanshan. Study on metal catalyzed biomass pyrolysis for preparation of high-value chemicals[D]. Hefei: University of Science and Technology of China, 2021. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[13] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |