化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7226-7237.DOI: 10.16085/j.issn.1000-6613.2024-1775
• 资源与环境化工 • 上一篇
吕育锋1(
), 李斌1, 冯婷娟1, 陈禹杭2, 聂鑫2, 刘庆玉2, 孟凡彬3, 魏欢欢2, 孙毅4, 王伟奇4, 秦艳松5, 王加蕙6
收稿日期:2024-11-03
修回日期:2025-01-10
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
吕育锋
作者简介:吕育锋(1986—),男,博士,高级工程师,研究方向为农村饮用水处理。E-mail: lvyf@iwhr.com。
基金资助:
LYU Yufeng1(
), LI Bin1, FENG Tingjuan1, CHEN Yuhang2, NIE Xin2, LIU Qingyu2, MENG Fanbin3, WEI Huanhuan2, SUN Yi4, WANG Weiqi4, QIN Yansong5, WANG Jiahui6
Received:2024-11-03
Revised:2025-01-10
Online:2025-12-25
Published:2026-01-06
Contact:
LYU Yufeng
摘要:
生物反硝化法除硝酸盐因低能耗、无二次污染,得到了广泛应用。电子供体在生物反硝化过程中对硝酸盐处理效率有重要影响,目前外加电子供体主要有碳源、硫代硫酸盐以及二者复合。为了探究不同电子供体对地下水硝酸盐生物处理效能及微生物间协同作用的影响,本文构建了葡萄糖、硫代硫酸钠、复合电子供体(葡萄糖-硫代硫酸钠)3个系统。3个系统分别运行,当水力停留时间(HRT)降低至1.1h时,仅复合电子供体系统的NO x--N去除率可维持在90%以上且无亚硝酸盐氮产生;在同硫氮比条件下,复合电子供体系统比硫代硫酸钠电子供体系统产生的SO42-更少,且比葡萄糖电子供体系统产生的污泥浓度更小。微生物群落结构分析发现,在复合电子供体系统中,主要功能菌为Sulfurimonas和Saccharimonadales,分别占41.0%和20.6%,总占比远高于单一电子供体系统,表明复合电子供体可以提高功能菌丰度从而提升硝酸盐去除效果。复合电子供体系统中与菌间协同作用相关的功能代谢丰度高于单一电子供体系统,菌间能量传递和代谢耦合等与协同作用相关功能基因丰度更高,提升了系统的脱氮性能和稳定性。
中图分类号:
吕育锋, 李斌, 冯婷娟, 陈禹杭, 聂鑫, 刘庆玉, 孟凡彬, 魏欢欢, 孙毅, 王伟奇, 秦艳松, 王加蕙. 复合电子供体强化地下水硝酸盐生物处理效能及微生物协同作用[J]. 化工进展, 2025, 44(12): 7226-7237.
LYU Yufeng, LI Bin, FENG Tingjuan, CHEN Yuhang, NIE Xin, LIU Qingyu, MENG Fanbin, WEI Huanhuan, SUN Yi, WANG Weiqi, QIN Yansong, WANG Jiahui. Compound electron donor enhances biological treatment efficiency of nitrate in groundwater and synergistic effect of microorganisms[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7226-7237.
| 成分 | 投加量/mg·L-1 |
|---|---|
| NaNO3 | 364.2 |
| Na2S2O3·5H2O(SND-SR系统) | 1062.6 |
| NaHCO3(SND-SR、GSDC-NRS系统) | 401.4 |
| C6H12O6(GNRS系统) | 385 |
| KH2PO4 | 19.8 |
表1 人工模拟配水组成
| 成分 | 投加量/mg·L-1 |
|---|---|
| NaNO3 | 364.2 |
| Na2S2O3·5H2O(SND-SR系统) | 1062.6 |
| NaHCO3(SND-SR、GSDC-NRS系统) | 401.4 |
| C6H12O6(GNRS系统) | 385 |
| KH2PO4 | 19.8 |
| 样品 | OUTs | Ace | Chao | Coverage | Shannon | Simpson |
|---|---|---|---|---|---|---|
| Y_1 | 1181 | 1292.81 | 1261.06 | 0.996 | 5.30 | 0.01 |
| LT_a1 | 769 | 964.92 | 976.00 | 0.995 | 3.96 | 0.07 |
| LT_b1 | 560 | 695.95 | 673.62 | 0.996 | 3.07 | 0.18 |
| L_a1 | 1073 | 1187.00 | 1160.50 | 0.996 | 5.12 | 0.02 |
| L_b1 | 728 | 878.67 | 846.60 | 0.996 | 3.75 | 0.09 |
| T_a1 | 807 | 954.22 | 959.26 | 0.996 | 4.08 | 0.06 |
| T_b1 | 631 | 728.54 | 700.73 | 0.997 | 3.69 | 0.07 |
表2 样品物种多样性指数
| 样品 | OUTs | Ace | Chao | Coverage | Shannon | Simpson |
|---|---|---|---|---|---|---|
| Y_1 | 1181 | 1292.81 | 1261.06 | 0.996 | 5.30 | 0.01 |
| LT_a1 | 769 | 964.92 | 976.00 | 0.995 | 3.96 | 0.07 |
| LT_b1 | 560 | 695.95 | 673.62 | 0.996 | 3.07 | 0.18 |
| L_a1 | 1073 | 1187.00 | 1160.50 | 0.996 | 5.12 | 0.02 |
| L_b1 | 728 | 878.67 | 846.60 | 0.996 | 3.75 | 0.09 |
| T_a1 | 807 | 954.22 | 959.26 | 0.996 | 4.08 | 0.06 |
| T_b1 | 631 | 728.54 | 700.73 | 0.997 | 3.69 | 0.07 |
| [1] | ZHAI Yuanzheng, LEI Yan, WU Jin, et al. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data[J]. Environmental Science and Pollution Research International, 2017, 24(4): 3640-3653. |
| [2] | DENG Yale, RUAN Yunjie, MA Bin, et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International, 2019, 132: 105085. |
| [3] | SU He, KANG Weidong, LI Yanrong, et al. Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287. |
| [4] | DENG Yuandong, YE Xueyan, DU Xinqiang. Predictive modeling and analysis of key drivers of groundwater nitrate pollution based on machine learning[J]. Journal of Hydrology, 2023, 624: 129934. |
| [5] | WARD Mary H, JONES Rena R, BRENDER Jean D, et al. Drinking water nitrate and human health: An updated review[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1557. |
| [6] | SONG Wen, GAO Baoyu, XU Xing, et al. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property[J]. Journal of Hazardous Materials, 2016, 304: 280-290. |
| [7] | EPSZTEIN Razi, Oded NIR, LAHAV Ori, et al. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme[J]. Chemical Engineering Journal, 2015, 279: 372-378. |
| [8] | 叶婷, 张光, 王珂, 等. 阴离子交换树脂生物再生去除硝酸盐氮[J]. 环境科学, 2018, 39(8): 3753-3758. |
| YE Ting, ZHANG Guang, WANG Ke, et al. Bioregeneration of anion exchange resin used in nitrate removal[J]. Environmental Science, 2018, 39(8): 3753-3758. | |
| [9] | 刘成, 张谦, 姜成浩, 等. 磁性树脂对地下水中硝酸盐的去除效能及影响因素[J]. 中国环境科学, 2014, 34(1): 65-71. |
| LIU Cheng, ZHANG Qian, JIANG Chenghao, et al. Performance and influencing factors of nitrate removed by magnetic resin from ground water[J]. China Environmental Science, 2014, 34(1): 65-71. | |
| [10] | 陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(S1): 366-374. |
| CHEN Zhihua, ZHOU Jian, WANG Sanfan. Summary of solid phase denitrification in water pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 366-374. | |
| [11] | 李同燕, 李文奇, 胡伟武, 等. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. |
| LI Tongyan, LI Wenqi, HU Weiwu, et al. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. | |
| [12] | LIU Cheng, ZHU Lifei, ZHANG Qian, et al. Preparation of nitrate-selective porous magnetic resin and assessment of its performance in removing nitrate from groundwater[J]. Environmental Technology, 2017, 38(3): 231-238. |
| [13] | ZHAO Bei, SUN Zhanxue, LIU Yajie. An overview of in situ remediation for nitrate in groundwater[J]. Science of the Total Environment, 2022, 804: 149981. |
| [14] | LEE Da-won, Yongtae AHN, PANDI Kalimuthu, et al. Evaluation of natural attenuation-potential and biogeochemical analysis in nitrate contaminated bedrock aquifers by carbon source injection[J]. Science of the Total Environment, 2021, 780: 146459. |
| [15] | 赵静, 付昆明, 黄少伟, 等. 不同电子供体的部分自养反硝化研究进展[J]. 中国给水排水, 2023, 39(14): 19-26. |
| ZHAO Jing, FU Kunming, HUANG Shaowei, et al. Research progress of partial autotrophic denitrification with different electron donors[J]. China Water & Wastewater, 2023, 39(14): 19-26. | |
| [16] | 杨洁, 方芳, 陈玲珑, 等. 硫自养-异养协同反硝化技术的研究进展[J]. 应用化工, 2024, 53(6): 1377-1382. |
| YANG Jie, FANG Fang, CHEN Linglong, et al. Review of heterotrophic-sulfur autotrophic synergistic denitrification technology[J]. Applied Chemical Industry, 2024, 53(6): 1377-1382. | |
| [17] | 曹阳, 刘彩虹, 陈子惟, 等. 固相自养-异养反硝化脱氮同步去除微污染物[J]. 中国环境科学, 2024, 44(3): 1265-1277. |
| CAO Yang, LIU Caihong, CHEN Ziwei, et al. Solid phase autotrophic-heterotrophic denitrification and simultaneously removal of trace pollutants[J]. China Environmental Science, 2024, 44(3): 1265-1277. | |
| [18] | LI Rui, FENG Chuanping, HU Weiwu, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J]. Water Research, 2016, 89: 171-179. |
| [19] | SUN Qi, FANG Yingke, LIU Wenzong, et al. Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor[J]. Environmental Research, 2023, 231: 116047. |
| [20] | SAHINKAYA Erkan, KILIC Adem, CALIMLIOGLU Beste, et al. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process[J]. Journal of Hazardous Materials, 2013, 262: 234-239. |
| [21] | 中华人民共和卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法 总则: [S]. 北京: 中国标准出版社, 2007. |
| Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard examination methods for drinking water-General principles: [S]. Beijing: Standards Press of China, 2007. | |
| [22] | GAO Shuang, LI Zhiling, HOU Yanan, et al. Effects of different carbon sources on the efficiency of sulfur-oxidizing denitrifying microorganisms[J]. Environmental Research, 2022, 204: 111946. |
| [23] | LIU Chunshuang, ZHAO Dongfeng, MA Wenjuan, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1421-1426. |
| [24] | 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. |
| LI Xiang, MA Hang, HUANG Yong, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water[J]. Environmental Science, 2016, 37(7): 2646-2651. | |
| [25] | CHUNG Jinwook, AMIN Khurram, KIM Seungjin, et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014, 58: 169-178. |
| [26] | 袁莹, 周伟丽, 王晖, 等. 不同电子供体的硫自养反硝化脱氮实验研究[J]. 环境科学, 2013, 34(5): 1835-1844. |
| YUAN Ying, ZHOU Weili, WANG Hui, et al. Study on sulfur-based autotrophic denitrification with different electron donors[J]. Environmental Science, 2013, 34(5): 1835-1844. | |
| [27] | ZHU Tingting, CHENG Haoyi, YANG Lihui, et al. Coupled sulfur and iron(II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal[J]. Environmental Science & Technology, 2019, 53(3): 1545-1554. |
| [28] | 任星豪. 硫自养-异养协同反硝化处理低C/N废水效能及微生物特征研究[D]. 广州: 华南理工大学, 2023. |
| REN Xinghao. Study on the efficiency and microbial characteristics of sulfur autotrophic-heterotrophic synergistic denitrification in the treatment of low C/N wastewater[D]. Guangzhou: South China University of Technology, 2023. | |
| [29] | 马潇然, 郑照明, 卞伟, 等. 硫自养反硝化系统运行效能和微生物群落结构研究[J]. 中国环境科学, 2020, 40(10): 4335-4341. |
| MA Xiaoran, ZHENG Zhaoming, BIAN Wei, et al. Study on operation efficiency and microbial community structure of sulfur-based autotrophic denitrification system[J]. China Environmental Science, 2020, 40(10): 4335-4341. | |
| [30] | 李彭. 不同电子供体深度脱氮工艺及微生物群落特征研究[D]. 北京: 清华大学, 2014. |
| LI Peng. Study on advanced denitrification process and microbial community characteristics of different electron donors[D]. Beijing: Tsinghua University, 2014. | |
| [31] | 王伟, 赵中原, 张鑫, 等. 不同外碳源对尾水极限脱氮性能及微生物群落结构的影响[J]. 环境科学, 2022, 43(9): 4717-4726. |
| WANG Wei, ZHAO Zhongyuan, ZHANG Xin, et al. Effects of external carbon sources on ultimate nitrogen removal performance and microbial community in secondary effluent treating process[J]. Environmental Science, 2022, 43(9): 4717-4726. | |
| [32] | 马切切, 袁林江, 牛泽栋, 等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学, 2021, 42(8): 3886-3893. |
| MA Qieqie, YUAN Linjiang, NIU Zedong, et al. Microbial community structure of activated sludge and its response to environmental factors[J]. Environmental Science, 2021, 42(8): 3886-3893. | |
| [33] | WANG Hongyu, HE Qiulai, CHEN Dan, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10829-10837. |
| [34] | 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166. |
| PENG Yongzhen, WANG Mingqi, PENG Yi, et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent: System performance and microbial communities[J]. Journal of Beijing University of Technology, 2021, 47(10): 1158-1166. | |
| [35] | ASIK Gulfem, YILMAZ Tulay, DI CAPUA Francesco, et al. Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment[J]. Journal of Environmental Management, 2021, 295: 113083. |
| [36] | ZHOU Ya, Wenning MAI, DAI Jihua, et al. Study on autotrophic denitrification performance of sodium thiosulfate combined with pyrite system[J]. China Environmental Science, 2020,40(5):2081-2086. |
| [37] | MA Wencheng, ZHOU Dapeng, ZHONG Dan, et al. Study of nitrogen removal efficiency of the filled bed reactors using alkali-treated corncobs-sulfur (mixotrophic) for treating the effluent from simulated urban wastewater plants[J]. Bioresource Technology, 2022, 349: 126630. |
| [38] | ZHANG Quan, XU Xijun, ZHANG Ruochen, et al. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism[J]. Water Research, 2022, 226: 119269. |
| [39] | XUE Zhaoxia, ZHANG Teng, SUN Yiwen, et al. Integrated moving bed biofilm reactor with partial denitrification-anammox for promoted nitrogen removal: Layered biofilm structure formation and symbiotic functional microbes[J]. Science of the Total Environment, 2022, 839: 156339. |
| [40] | 陈鑫童, 郝庆菊, 熊艳芳, 等. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 2022, 43(3): 1492-1499. |
| CHEN Xintong, HAO Qingju, XIONG Yanfang, et al. Effects of hematite and biochar addition on wastewater treatment efficiency, greenhouse gas emission, and microbial community in subsurface flow constructed wetland[J]. Environmental Science, 2022, 43(3): 1492-1499. | |
| [41] | 耿雅雯, 刘锋, 冯震, 等. 硫自养/异养协同反硝化深度脱氮处理三氯蔗糖生产废水[J]. 化工进展, 2021, 40(10): 5829-5836. |
| GENG Yawen, LIU Feng, FENG Zhen, et al. Deep treatment of sucralose wastewater with sulfur autotrophic/heterotrophic synergistic denitrification[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5829-5836. | |
| [42] | SUN Shanshan, LIU Jie, ZHANG Manping, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission[J]. Bioresource Technology, 2020, 300: 122651. |
| [43] | XIAO Wanting, XU Guoren, LI Guibai. Role of shear stress in biological aerated filter with nanobubble aeration: Performance, biofilm structure and microbial community[J]. Bioresource Technology, 2021, 325: 124714. |
| [44] | KAPPLER Ulrike, BENNETT Brian, Jörg RETHMEIER, et al. Sulfite: Cytochrome c Oxidoreductase fromThiobacillus novellus purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family[J]. Journal of Biological Chemistry, 2000, 275(18): 13202-13212. |
| [45] | TAKEUCHI T L, SUZUKI I. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate[J]. Journal of Bacteriology, 1994, 176(3): 913-916. |
| [46] | KAPPLER Ulrike, DAHL Christiane. Enzymology and molecular biology of prokaryotic sulfite oxidation[J]. FEMS Microbiology Letters, 2001, 203(1): 1-9. |
| [47] | ROHWERDER Thore, SAND Wolfgang. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology, 2003, 149(Pt 7): 1699-1710. |
| [48] | 吕小梅, 吴毅聪, 陈桂连, 等. 硫自养反硝化颗粒表面与间隙微生物群落特征和基因分布[J]. 中国环境科学, 2022, 42(6): 2764-2770. |
| Xiaomei LYU, WU Yicong, CHEN Guilian, et al. Community structure and gene distribution of the surface and interstitial biofilm in the particle sulfur autotrophic denitrification[J]. China Environmental Science, 2022, 42(6): 2764-2770. |
| [1] | 薛佳琳, 李文譞, 武欣童, 王雪超, 王可馨, 谢慧娜, 李杰. 铁基自养生物脱氮技术研究进展[J]. 化工进展, 2025, 44(S1): 504-517. |
| [2] | 王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502. |
| [3] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [4] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [5] | 张海兵, 刘云遏, 黄志昊, 沈蓉. Ti foam-Ni-Sn/Bi电极制备及其电还原NO3--N的性能[J]. 化工进展, 2025, 44(2): 1100-1109. |
| [6] | 李晨曦, 王志超, 李卫平, 托梓硕, 李志军, 李国文. 新型碳源聚乙醇酸对活性污泥性能及微生物群落的影响[J]. 化工进展, 2025, 44(11): 6705-6715. |
| [7] | 李书鹏, 独学渊, 李霏, 郭丽莉, 李广贺. 还原材料修复卤代溶剂污染地下水的研究进展[J]. 化工进展, 2025, 44(1): 500-512. |
| [8] | 毛华恺, 余洋, 张悦, 夏广坤, 吴赟韬, 楼乐瑶, 牛文娟, 刘念. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765. |
| [9] | 何弈雪, 秦先超, 马伟芳. 过硫酸盐高级氧化原位修复地下水中卤代烃污染研究进展[J]. 化工进展, 2024, 43(7): 4072-4088. |
| [10] | 葛四杰, 杨大鑫, 吕君, 王振, 张传义, 张文华. 复合硫基质驱动自养反硝化脱氮除磷效能与微生物群落结构[J]. 化工进展, 2024, 43(4): 2135-2143. |
| [11] | 赵瑞强, 周鑫, 牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展, 2024, 43(3): 1593-1605. |
| [12] | 杨杰源, 朱易春, 赖雅芬, 张超, 田帅, 谢颖. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108. |
| [13] | 陈虎, 王莹, 王璞玉, 吕永康. 假单胞菌属细菌LV1强化序批式生物膜反应器喹啉降解性能[J]. 化工进展, 2024, 43(12): 6995-7003. |
| [14] | 解舒婷, 代伟. 同步硝化反硝化除磷颗粒污泥的快速启动与强化[J]. 化工进展, 2024, 43(10): 5976-5983. |
| [15] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |