化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 504-517.DOI: 10.16085/j.issn.1000-6613.2025-0423

• 资源与环境化工 • 上一篇    

铁基自养生物脱氮技术研究进展

薛佳琳1(), 李文譞2,3, 武欣童1, 王雪超1, 王可馨4, 谢慧娜1, 李杰1()   

  1. 1.兰州交通大学环境与市政工程学院,甘肃 兰州 730070
    2.北京林业大学环境科学与工程学院,北京市 水污染源控制技术重点实验室,北京 100083
    3.中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012
    4.西安建筑科技大学环境与市政工程学院,陕西 西安 710055
  • 收稿日期:2025-03-20 修回日期:2025-07-05 出版日期:2025-10-25 发布日期:2025-11-24
  • 通讯作者: 李杰
  • 作者简介:薛佳琳(2002—),女,硕士研究生,研究方向为水污染控制。E-mail:xxmimiya@163.com
  • 基金资助:
    甘肃省青年科技基金(23JRRA888)

Research progress on iron-based autotrophic biological denitrification technology

XUE Jialin1(), LI Wenxuan2,3, WU Xintong1, WANG Xuechao1, WANG Kexin4, XIE Huina1, LI Jie1()   

  1. 1.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2.Beijing Key Laboratory of Water Pollution Source Control Technology, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
    3.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Academy of Environmental Sciences, Beijing 100012, China
    4.School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
  • Received:2025-03-20 Revised:2025-07-05 Online:2025-10-25 Published:2025-11-24
  • Contact: LI Jie

摘要:

铁基自养生物脱氮技术是一种新兴的废水处理策略,在低碳氮比环境下展现出良好的脱氮潜力。本文系统综述硝酸盐依赖亚铁氧化(NDFO)与铁氨氧化(Feammox)的核心研究进展:NDFO过程以Fe(Ⅱ)为电子供体还原硝酸盐,具备低污泥产量、无二次污染优势;其功能微生物以自养型和混合营养型菌群为主,但铁化合物沉淀引发的微生物活性抑制制约系统长期稳定性。Feammox过程以Fe(Ⅲ)为电子受体直接氧化氨氮,依赖铁还原菌驱动反应,然而脱氮效率受限与Fe(Ⅲ)再生不足亟待突破。协同脱氮体系通过Fe(Ⅱ)/Fe(Ⅲ)循环实现NDFO与Feammox耦合:Feammox生成的亚铁供NDFO还原硝酸盐,NDFO再生的三价铁回用于氨氧化,会形成脱氮循环并降低对外源铁依赖;进一步耦合厌氧氨氧化(Anammox)构建复合工艺,可协同处理氨氮、硝酸盐等多形态污染物,拓展复杂水质适应能力。当前问题仍集中于铁循环可持续性失衡、铁沉淀对微生物的活性抑制。未来需要深入解析功能菌群互作网络和电子传递机制,开发铁沉淀控制策略,优化系统运行参数,并推进工程化验证以加速技术应用。

关键词: 铁基自养脱氮, 硝酸盐依赖亚铁氧化, 铁氨氧化, 厌氧氨氧化, 污水处理

Abstract:

Iron-based autotrophic biological nitrogen removal technology is an emerging wastewater treatment strategy, showing good nitrogen removal potential in a low carbon-nitrogen ratio environment. This paper systematically reviewed the core research progress of nitrate-dependent ferrous oxidation (NDFO) and iron ammonia oxidation (Feammox). The NDFO process uses Fe(Ⅱ) as an electron donor to reduce nitrate, which has the advantages of low sludge production and no secondary pollution. The functional microorganisms are mainly autotrophic and mixed nutrient flora, but the inhibition of microbial activity caused by iron compound precipitation restricts the long-term stability of the system. The Feammox process uses Fe(Ⅲ) as an electron acceptor to directly oxidize ammonia nitrogen and relies on iron-reducing bacteria to drive the reaction. However, the limited nitrogen removal efficiency and the lack of Fe(Ⅲ) regeneration need to be broken through. The synergistic denitrification system realizes the coupling of NDFO and Feammox through the Fe(Ⅱ)/Fe(Ⅲ) cycle: the ferrous iron generated by Feammox is used for the reduction of nitrate by NDFO, and the trivalent iron regenerated by NDFO is reused for ammonia oxidation to form a denitrification cycle and reduce the dependence of exogenous iron source. Further coupling anaerobic ammonia oxidation (Anammox) to construct a composite process can synergistically treat multi-form pollutants such as ammonia nitrogen and nitrate, and expand the adaptability to complex water quality. The current bottleneck is still focused on the imbalance of iron cycle sustainability and the inhibition of microbial activity by iron precipitation. In the future, it is necessary to deeply analyze the interaction network and electron transfer mechanism of functional bacteria, develop iron precipitation control strategy, optimize system operation parameters, and promote engineering verification to accelerate the application of technology.

Key words: iron-based autotrophic denitrification, nitrate-dependent ferrous iron oxidation, Fe(Ⅲ)-reducing coupled anaerobic ammonium oxidation, anaerobic ammonia oxidation, sewage treatment

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn