化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 504-517.DOI: 10.16085/j.issn.1000-6613.2025-0423
• 资源与环境化工 • 上一篇
薛佳琳1(
), 李文譞2,3, 武欣童1, 王雪超1, 王可馨4, 谢慧娜1, 李杰1(
)
收稿日期:2025-03-20
修回日期:2025-07-05
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
李杰
作者简介:薛佳琳(2002—),女,硕士研究生,研究方向为水污染控制。E-mail:xxmimiya@163.com。
基金资助:
XUE Jialin1(
), LI Wenxuan2,3, WU Xintong1, WANG Xuechao1, WANG Kexin4, XIE Huina1, LI Jie1(
)
Received:2025-03-20
Revised:2025-07-05
Online:2025-10-25
Published:2025-11-24
Contact:
LI Jie
摘要:
铁基自养生物脱氮技术是一种新兴的废水处理策略,在低碳氮比环境下展现出良好的脱氮潜力。本文系统综述硝酸盐依赖亚铁氧化(NDFO)与铁氨氧化(Feammox)的核心研究进展:NDFO过程以Fe(Ⅱ)为电子供体还原硝酸盐,具备低污泥产量、无二次污染优势;其功能微生物以自养型和混合营养型菌群为主,但铁化合物沉淀引发的微生物活性抑制制约系统长期稳定性。Feammox过程以Fe(Ⅲ)为电子受体直接氧化氨氮,依赖铁还原菌驱动反应,然而脱氮效率受限与Fe(Ⅲ)再生不足亟待突破。协同脱氮体系通过Fe(Ⅱ)/Fe(Ⅲ)循环实现NDFO与Feammox耦合:Feammox生成的亚铁供NDFO还原硝酸盐,NDFO再生的三价铁回用于氨氧化,会形成脱氮循环并降低对外源铁依赖;进一步耦合厌氧氨氧化(Anammox)构建复合工艺,可协同处理氨氮、硝酸盐等多形态污染物,拓展复杂水质适应能力。当前问题仍集中于铁循环可持续性失衡、铁沉淀对微生物的活性抑制。未来需要深入解析功能菌群互作网络和电子传递机制,开发铁沉淀控制策略,优化系统运行参数,并推进工程化验证以加速技术应用。
中图分类号:
薛佳琳, 李文譞, 武欣童, 王雪超, 王可馨, 谢慧娜, 李杰. 铁基自养生物脱氮技术研究进展[J]. 化工进展, 2025, 44(S1): 504-517.
XUE Jialin, LI Wenxuan, WU Xintong, WANG Xuechao, WANG Kexin, XIE Huina, LI Jie. Research progress on iron-based autotrophic biological denitrification technology[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 504-517.
| 类型 | 电子受体/供体 | 产物或中间产物 | 特点 | 参考文献 |
|---|---|---|---|---|
| NDFO | Fe(Ⅱ) | N2、 | 成本低廉、处理效能高、反应产物多效,但Fe形态变化易影响效能 | [ |
| Feammox | Fe(Ⅲ) | 成本低、温室气体少,但脱氮效率不高 | [ | |
| NDFO与Feammox耦合 | Fe(Ⅱ)和Fe(Ⅲ) | N₂ | 较低的Fe需求、持续稳定脱氮,但Fe的形式和氧化还原速率、氮比例控制影响脱氮效果 | [ |
表1 不同脱氮技术之间的比较
| 类型 | 电子受体/供体 | 产物或中间产物 | 特点 | 参考文献 |
|---|---|---|---|---|
| NDFO | Fe(Ⅱ) | N2、 | 成本低廉、处理效能高、反应产物多效,但Fe形态变化易影响效能 | [ |
| Feammox | Fe(Ⅲ) | 成本低、温室气体少,但脱氮效率不高 | [ | |
| NDFO与Feammox耦合 | Fe(Ⅱ)和Fe(Ⅲ) | N₂ | 较低的Fe需求、持续稳定脱氮,但Fe的形式和氧化还原速率、氮比例控制影响脱氮效果 | [ |
| [1] | MISHRA Saurabh, SINGH Virender, CHENG Liu, et al. Nitrogen removal from wastewater: A comprehensive review of biological nitrogen removal processes, critical operation parameters and bioreactor design[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107387. |
| [2] | HU Kaiyao, LI Wenxuan, WANG Yaning, et al. Novel biological nitrogen removal process for the treatment of wastewater with low carbon to nitrogen ratio: A review[J]. Journal of Water Process Engineering, 2023, 53: 103673. |
| [3] | LI Wenwei, YU Hanqing, RITTMANN Bruce E. Chemistry: Reuse water pollutants[J]. Nature, 2015, 528(7580): 29-31. |
| [4] | WANG Lisheng, GU Wancong, LIU Yanchen, et al. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment[J]. Science of the Total Environment, 2022, 820: 153351. |
| [5] | STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62(4): 1458-1460. |
| [6] | WEBER Karrie A, ACHENBACH Laurie A, COATES John D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764. |
| [7] | SI Zhihao, SONG Xinshan, WANG Yuhui, et al. Untangling the nitrate removal pathways for a constructed wetland- sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393: 122407. |
| [8] | HU Min, CHEN Pengcheng, SUN Weimin, et al. Physiological and genomic characterization of a nitrate-reducing Fe(Ⅱ)-oxidizing bacterium isolated from paddy soil[J]. Geomicrobiology Journal, 2019, 36(5): 433-442. |
| [9] | TIAN Tian, ZHOU Ke, XUAN Liang, et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research, 2020, 170: 115300. |
| [10] | ZHANG Liangying, SUN Haohao, ZHANG Xuxiang, et al. High diversity of potential nitrate-reducing Fe(Ⅱ)-oxidizing bacteria enriched from activated sludge[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4975-4985. |
| [11] | FENG Li, LI Jin, MA Haoran, et al. Effect of Fe(Ⅱ) on simultaneous marine anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: Enhanced performance and kinetics[J]. Desalination, 2020, 478: 114287. |
| [12] | LI Xiang, HUANG Yong, LIU Hengwei, et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64: 42-50. |
| [13] | LI Jianmin, ZENG Wei, LIU Hong, et al. Achieving deep autotrophic nitrogen removal from low strength ammonia nitrogen wastewater in aeration sponge iron biofilter: Simultaneous nitrification, Feammox, NDFO and Anammox[J]. Chemical Engineering Journal, 2023, 460: 141755. |
| [14] | LUEF Birgit, FAKRA Sirine C, CSENCSITS Roseann, et al. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth[J]. The ISME Journal, 2013, 7(2): 338-350. |
| [15] | 姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究[J]. 环境科学学报, 2019, 39(9): 2953-2963. |
| YAO Hainan, ZHANG Liqiu, LI Shugeng, et al. Study on the factors affecting simulated landfill leachate treatment by anaerobic ferric ammonia oxidation[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2953-2963. | |
| [16] | YANG Yafei, XIAO Cancan, YU Qing, et al. Using Fe(Ⅱ)/Fe(Ⅲ) as catalyst to drive a novel anammox process with no need of anammox bacteria[J]. Water Research, 2021, 189: 116626. |
| [17] | YANG Yafei, ZHAO Zhiqiang, ZHANG Yaobin. Anaerobic ammonium removal pathway driven by the Fe(Ⅱ)/Fe(Ⅲ) cycle through intermittent aeration[J]. Environmental Science & Technology, 2021, 55(11): 7615-7623. |
| [18] | YANG Wendy H, WEBER Karrie A, SILVER Whendee L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. |
| [19] | LI Xiang, YUAN Yan, HUANG Yong. Enhancing the nitrogen removal efficiency of a new autotrophic biological nitrogen-removal process based on the iron cycle: Feasibility, progress, and existing problems[J]. Journal of Cleaner Production, 2021, 317: 128499. |
| [20] | ZHANG Qianqian, FENG Zetong, ZHOU Jiamin, et al. Roles of Fe(Ⅱ), Fe(Ⅲ) and Fe0 in denitrification and anammox process: Mechanisms, advances and perspectives[J]. Journal of Water Process Engineering, 2023, 53: 103746. |
| [21] | LIU Hongbo, CHEN Zihua, GUAN Yongnian, et al. Role and application of iron in water treatment for nitrogen removal: A review[J]. Chemosphere, 2018, 204: 51-62. |
| [22] | 陈丹丹. 硝酸盐依赖亚铁氧化的生物和非生物过程研究[D]. 广州: 中国科学院广州地球化学研究所, 2016. |
| CHEN Dandan. The study of biotic and abiotic processes in a nitrate-dependent Fe(Ⅱ) oxidation system[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016. | |
| [23] | ZHANG Lihong, LI Wenxuan, LI Jie, et al. A novel iron-mediated nitrogen removal technology of ammonium oxidation coupled to nitrate/nitrite reduction: Recent advances[J]. Journal of Environmental Management, 2022, 319: 115779. |
| [24] | JAMIESON James, PROMMER Henning, KAKSONEN Anna H, et al. Identifying and quantifying the intermediate processes during nitrate-dependent iron(Ⅱ) oxidation[J]. Environmental Science & Technology, 2018, 52(10): 5771-5781. |
| [25] | KLUEGLEIN N, KAPPLER A. Abiotic oxidation of Fe(Ⅱ) by reactive nitrogen species in cultures of the nitrate-reducing Fe(Ⅱ) oxidizer Acidovorax sp. BoFeN1—questioning the existence of enzymatic Fe(Ⅱ) oxidation[J]. Geobiology, 2013, 11(2): 180-190. |
| [26] | WANG Yaning, REN Shuang, WANG Peng, et al. Autotrophic denitrification using Fe(Ⅱ) as an electron donor: A novel prospective denitrification process[J]. Science of the Total Environment, 2023, 858: 159721. |
| [27] | PEDUZZI Sandro, STORELLI Nicola, WELSH Allana, et al. Candidatus “Thiodictyon syntrophicum”, sp. nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp.[J]. Systematic and Applied Microbiology, 2012, 35(3): 139-144. |
| [28] | BRYCE Casey, BLACKWELL Nia, SCHMIDT Caroline, et al. Microbial anaerobic Fe(Ⅱ) oxidation—Ecology, mechanisms and environmental implications[J]. Environmental Microbiology, 2018, 20(10): 3462-3483. |
| [29] | LIU Tongxu, CHEN Dandan, LUO Xiaobo, et al. Microbially mediated nitrate-reducing Fe(Ⅱ) oxidation: Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256: 97-115. |
| [30] | FINNERAN Kevin T, HOUSEWRIGHT Meghan E, LOVLEY Derek R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments[J]. Environmental Microbiology, 2002, 4(9): 510-516. |
| [31] | SUN Wenjie, Reyes SIERRA-ALVAREZ, MILNER Lily, et al. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments[J]. Environmental Science & Technology, 2009, 43(17): 6585-6591. |
| [32] | YANG Lili, LI Wenxuan, LIU Jie, et al. Nitrate-dependent ferrous oxidation: Feasibility, mechanism, and application prospects for wastewater treatment[J]. Journal of Water Process Engineering, 2024, 60: 105226. |
| [33] | WANG Peng, LI Wenxuan, REN Shuang, et al. Use of sponge iron as an indirect electron donor to provide ferrous iron for nitrate-dependent ferrous oxidation processes: Denitrification performance and mechanism[J]. Bioresource Technology, 2022, 357: 127318. |
| [34] | SU Junfeng, SHAO Sicheng, HUANG Tinglin, et al. Anaerobic nitrate-dependent iron(Ⅱ) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2187-2193. |
| [35] | ZHANG Huining, WANG Hongyu, YANG Kai, et al. Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe(Ⅱ) as electron donor[J]. Annals of Microbiology, 2015, 65(2): 1069-1078. |
| [36] | ZHANG Meng, ZHENG Ping, ZENG Zhuo, et al. Physicochemical characteristics and microbial community of cultivated sludge for nitrate-dependent anaerobic ferrous-oxidizing (NAFO) process[J]. Separation and Purification Technology, 2016, 169: 296-303. |
| [37] | KANAPARTHI Dheeraj, CONRAD Ralf. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria[J]. Systematic and Applied Microbiology, 2015, 38(3): 184-188. |
| [38] | ZHANG Xiaoxin, LI Ang, SZEWZYK Ulrich, et al. Improvement of biological nitrogen removal with nitrate-dependent Fe(Ⅱ) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J]. Bioresource Technology, 2016, 219: 624-631. |
| [39] | DENG Shihai, PENG Shuai, Huu Hao NGO, et al. Characterization of nitrous oxide and nitrite accumulation during iron (Fe(0))-and ferrous iron (Fe(Ⅱ))-driven autotrophic denitrification: Mechanisms, environmental impact factors and molecular microbial characterization[J]. Chemical Engineering Journal, 2022, 438: 135627. |
| [40] | WU Peng, CHEN Junjiang, GARLAPATI Vijay Kumar, et al. Novel insights into Anammox-based processes: A critical review[J]. Chemical Engineering Journal, 2022, 444: 136534. |
| [41] | 陈瑶. 铁对厌氧氨氧化菌群的作用机制与系统铁氮耦合代谢研究[D]. 北京: 北京交通大学, 2024. |
| CHEN Yao. Study on the mechanism of iron on anaerobic ammonia oxidizing bacteria and the coupling metabolism of iron and nitrogen in the system[D]. Beijing: Beijing Jiaotong University, 2024. | |
| [42] | LI Shengjie, DIAO Muhe, LIAO Yinhao, et al. Performance, microbial growth and community interactions of iron-dependent denitrification in freshwaters[J]. Environment International, 2023, 178: 108124. |
| [43] | WANG Ru, XU Shaoyi, ZHANG Meng, et al. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110343. |
| [44] | ZHANG Xiaoxin, SZEWZYK Ulrich, MA Fang. Characterization of Aquabacterium parvum sp. strain B6 during nitrate-dependent Fe(Ⅱ) oxidation batch cultivation with various impact factors[J]. Transactions of Tianjin University, 2017, 23(4): 315-324. |
| [45] | SCHMID G, ZEITVOGEL F, HAO L, et al. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(Ⅱ) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches[J]. Geobiology, 2014, 12(4): 340-361. |
| [46] | ZHANG Meng, ZHANGZHU Gucheng, WEN Shuxian, et al. Chemolithotrophic denitrification by nitrate-dependent anaerobic iron oxidizing (NAIO) process: Insights into the evaluation of seeding sludge[J]. Chemical Engineering Journal, 2018, 345: 345-352. |
| [47] | WANG Ru, YANG Cheng, WANG Wenyan, et al. An efficient way to achieve stable and high-rate ferrous ion-dependent nitrate removal (FeNiR): Batch sludge replacement[J]. Science of the Total Environment, 2020, 738: 139396. |
| [48] | WANG Yujia, FU Zicheng, SHI Chao, et al. Improvement of nitrate-dependent anaerobic ferrous oxidation by EDTA-2Na addition: An effective way for dealing with iron crusts[J]. Journal of Water Process Engineering, 2023, 53: 103813. |
| [49] | LIU Nan, LI Yingying, OUYANG Dujuan, et al. Performance and microbial community analysis of an electrobiofilm reactor enhanced by ferrous-EDTA[J]. ACS Omega, 2021, 6(28): 17766-17775. |
| [50] | WANG Ru, WANG Wenyan, LIU Mengyu, et al. Improvement of ferrous ion-dependent nitrate removal (FeNiR) process with chelating ferrous ion as substrate[J]. Journal of Environmental Management, 2020, 271: 110841. |
| [51] | DAVEREY Achlesh, CHEN Yi-Chian, SUNG Shihwu, et al. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process[J]. Bioresource Technology, 2014, 165: 105-110. |
| [52] | JIN Rencun, YANG Guangfeng, YU Jinjin, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. |
| [53] | WERALUPITIYA Chanusha, WANIGATUNGE Rasika, JOSEPH Sarangi, et al. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal[J]. Bioresource Technology, 2021, 334: 125240. |
| [54] | MA Bin, WANG Shanyun, CAO Shenbin, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. |
| [55] | FENG Yan, WANG Shuying, PENG Yongzhen. Stable nitrogen removal in the novel continuous flow anammox system under deteriorated partial nitrification: Significance and superiority of the anaerobic-oxic-anoxic-oxic operation mode[J]. Bioresource Technology, 2022, 361: 127693. |
| [56] | LI Jin, FENG Li, BISWAL Basanta Kumar, et al. Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(Ⅲ) in saline wastewater treatment under low temperature[J]. Bioresource Technology, 2020, 295: 122292. |
| [57] | SAWAYAMA Shigeki. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72. |
| [58] | XIA Qing, AI Ziyin, HUANG Wenli, et al. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review[J]. Bioresource Technology, 2022, 362: 127868. |
| [59] | SHRESTHA Junu, RICH Jeremy J, EHRENFELD Joan G, et al. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: Laboratory, field demonstrations, and push-pull rate determination[J]. Soil Science, 2009, 174(3): 156-164. |
| [60] | 胡凯耀, 王亚娥, 李杰, 等. 铁氨氧化研究进展及在污水脱氮中的应用探索[J]. 环境化学, 2023, 42(1): 264-276. |
| HU Kaiyao, WANG Yae, LI Jie, et al. Research progress of Feammox and its application in wastewater denitrification[J]. Environmental Chemistry, 2023, 42(1): 264-276. | |
| [61] | 杨莉莉, 李文譞, 彭钰卓, 等. 铁氨氧化技术在废水脱氮中的应用研究进展[J]. 中国环境科学, 2023, 43(6): 2948-2959. |
| YANG Lili, LI Wenxuan, PENG Yuzhuo, et al. Research progress on the application of Feammox for nitrogen removal from wastewaters[J]. China Environmental Science, 2023, 43(6): 2948-2959. | |
| [62] | HUANG Shan, JAFFÉ Peter R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. PLoS One, 2018, 13(4): e0194007. |
| [63] | REN Yi, HAO NGO Huu, GUO Wenshan, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems[J]. Bioresource Technology, 2020, 297: 122491. |
| [64] | GE Jinyi, HUANG Shan, HAN Il, et al. Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6[J]. Environmental Pollution, 2019, 247: 248-255. |
| [65] | YANG Yafei, PENG Hong, NIU Junfeng, et al. Promoting nitrogen removal during Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247: 973-979. |
| [66] | SUN Shanshan, ZHANG Manping, GU Xushun, et al. New insight and enhancement mechanisms for Feammox process by electron shuttles in wastewater treatment—A systematic review[J]. Bioresource Technology, 2023, 369: 128495. |
| [67] | WANG Zhenxin, WANG Xuepeng, SUN Ye, et al. Fe(OH)3 induced the Anammox system to perform extracellular electron transfer for enhancement of NH 4 + removal[J]. Chemical Engineering Journal, 2023, 460: 141768. |
| [68] | 罗珺月, 冯杰, 罗阳, 等. 微生物厌氧氨氧化耦合铁还原的研究进展及展望[J]. 微生物学报, 2023, 63(6): 2031-2046. |
| LUO Junyue, FENG Jie, LUO Yang, et al. Research progress and prospect of microbial ammonium oxidation coupled to Fe(Ⅲ) reduction[J]. Acta Microbiologica Sinica, 2023, 63(6): 2031-2046. | |
| [69] | WAN Liuyang, LIU Hong, WANG Xingzu. Anaerobic ammonium oxidation coupled to Fe(Ⅲ) reduction: Discovery, mechanism and application prospects in wastewater treatment[J]. Science of the Total Environment, 2022, 818: 151687. |
| [70] | PARK Wooshin, Youn-Ku NAM, LEE Myun-Joo, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH 4 + /Fe3+ medium[J]. Biotechnology and Bioprocess Engineering, 2009, 14(5): 680-685. |
| [71] | ZHOU Guowei, YANG Xiaoru, LI Hu, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307. |
| [72] | KAPPLER Andreas, BENZ Marcus, SCHINK Bernhard, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment[J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92. |
| [73] | LI F B, LI X M, ZHOU S G, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution, 2010, 158(5): 1733-1740. |
| [74] | ZHU Tingting, ZHANG Yaobin, LIU Yiwen, et al. Electrostimulation enhanced ammonium removal during Fe(Ⅲ) reduction coupled with anaerobic ammonium oxidation (Feammox) process[J]. Science of the Total Environment, 2021, 751: 141703. |
| [75] | CAO Jie, LI Ning, JIANG Jin, et al. Activated carbon as an insoluble electron shuttle to enhance the anaerobic ammonium oxidation coupled with Fe(Ⅲ) reduction process[J]. Environmental Research, 2022, 204: 111972. |
| [76] | Macarena GONZÁLEZ, Ámbar CERDA, Carolina RODRÍGUEZ, et al. Coupling of the Feammox-Anammox pathways by using a sequential discontinuous bioreactor[J]. Bioresource Technology, 2024, 395: 130334. |
| [77] | 张莉红. 基于生物铁泥的厌氧NH 4 + -N氧化耦合NO x - -N还原脱氮研究[D]. 兰州: 兰州交通大学, 2023. |
| ZHANG Lihong. Study on denitrification by anaerobic NH 4 + -N oxidation coupled with NO x - -N based on biological iron sludge[D]. Lanzhou: Lanzhou Jiatong University, 2023. | |
| [78] | WANG Wei, DING Bangjing, HU Youyou, et al. Evidence for the occurrence of Feammox coupled with nitrate-dependent Fe(Ⅱ) oxidation in natural enrichment cultures[J]. Chemosphere, 2022, 303: 134903. |
| [79] | LI Jianmin, ZENG Wei, LIU Hong, et al. Achieving deep autotrophic nitrogen removal in aerated biofilter driven by sponge iron: Performance and mechanism[J]. Environmental Research, 2022, 213: 113653. |
| [80] | 于妍, 刘宁, 廖祖刚, 等. 铁型反硝化脱氮技术研究进展[J]. 中国环境科学, 2022, 42(1): 83-91. |
| YU Yan, LIU Ning, LIAO Zugang, et al. Research progress of iron-type denitrification removal technology[J]. China Environmental Science, 2022, 42(1): 83-91. | |
| [81] | SHU Duntao, HE Yanling, YUE Hong, et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 290: 21-30. |
| [82] | SHUAI Weitao, JAFFÉ Peter R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984-992. |
| [83] | LI Xiang, YUAN Yan, HUANG Yong, et al. A novel method of simultaneous NH 4 + and NO 3 - removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631/632: 153-157. |
| [84] | YANG Yafei, XIAO Cancan, LU Jianhui, et al. Fe(Ⅲ)/Fe(Ⅱ) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor[J]. Water Research, 2020, 172: 115528. |
| [85] | WANG Wei, HU Youyou, QI Xin, et al. Endogenous mechanism of microbial functional gene and exogenous nitrogen removal factors driven by sustainable iron-nitrogen cycling[J]. Journal of Cleaner Production, 2023, 391: 136043. |
| [86] | Chengkun KAO, ZHANG Qiong, LI Jianwei, et al. Simultaneous nitrogen and phosphorus removal from municipal wastewater by Fe(Ⅲ)/Fe(Ⅱ) cycling mediated partial-denitrification/anammox[J]. Bioresource Technology, 2022, 363: 127997. |
| [87] | HAO Xiaojing, ZENG Wei, LI Jianmin, et al. High-efficient nitrogen removal with low demand of Fe source and mechanism analysis driven by Fe(Ⅱ)/Fe(Ⅲ) cycle[J]. Chemical Engineering Journal, 2024, 481: 148702. |
| [88] | JI Luomiao, ZHANG Xiaonong, ZHU Xurui, et al. Novel insights into Feammox coupled with the NDFO: A critical review[J]. Science of the Total Environment, 2024, 951: 175721. |
| [89] | 薛佳慧, 李彦宇, 邱旭, 等. 硝酸盐依赖性亚铁氧化脱氮技术研究进展[J]. 中国环境科学, 2024, 44(12): 6668-6680. |
| XUE Jiahui, LI Yanyu, QIU Xu, et al. Research progress of nitrate-dependent ferrous oxidation denitrification technology[J]. China Environmental Science, 2024, 44(12): 6668-6680. | |
| [90] | 胡劲涛, 信欣. 电化学系统内Feammox/NDFO耦合工艺脱氮效能和机理[J]. 中国环境科学, 2024, 44(9): 4958-4967. |
| HU Jintao, XIN Xin. Nitrogen removal efficiency and mechanism of Feammox/NDFO coupling process in electrochemical system[J]. China Environmental Science, 2024, 44(9): 4958-4967. | |
| [91] | DING Jing, SEOW Wanyi, ZHOU Jizhong, et al. Effects of Fe(Ⅱ) on anammox community activity and physiologic response[J]. Frontiers of Environmental Science & Engineering, 2020, 15(1): 7. |
| [92] | SHU Duntao, HE Yanling, YUE Hong, et al. Effects of Fe(Ⅱ) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis[J]. RSC Advances, 2016, 6(72): 68005-68016. |
| [93] | ZHANG Miao, GUAN Zhongkuo, LI Biao, et al. Denitrification enhancement, kinetic simulation and microbial assessment in the sponge iron-mediated anammox process: A method for low-strength nitrogen wastewater treatment[J]. Journal of Water Process Engineering, 2025, 72: 107550. |
| [94] | XIE Fei, MA Xiao, ZHAO Bowei, et al. Promoting the nitrogen removal of anammox process by Fe-C micro-electrolysis[J]. Bioresource Technology, 2020, 297: 122429. |
| [95] | YAO Zongbao, WANG Fang, WANG Chunliu, et al. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research, 2019, 26(15): 15084-15094. |
| [96] | BENNETT B D, GRALNICK J A. Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems[J]. Free Radical Biology and Medicine, 2019, 140: 167-171. |
| [97] | LI Zhixing, PENG Yongzhen, GAO Haijing. A novel strategy for accelerating the recovery of a Fe(Ⅱ)-inhibited anammox reactor by intermittent addition of betaine: Performance, kinetics and statistical analysis[J]. Chemosphere, 2020, 251: 126362. |
| [98] | KAMPSCHREUR Marlies J, KLEEREBEZEM Robbert, DE VET Weren W J M, et al. Reduced iron induced nitric oxide and nitrous oxide emission[J]. Water Research, 2011, 45(18): 5945-5952. |
| [99] | Nicole WRAGE-MÖNNIG, HORN Marcus A, WELL Reinhard, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited[J]. Soil Biology and Biochemistry, 2018, 123: A3-A16. |
| [1] | 雷雪艳, 朱易春, 张超, 郝宛婷, 陈仔龙, 宋贤威, 黄书昌, 董姗燕. 零价铁耦合厌氧氨氧化系统高效同步脱氮除磷[J]. 化工进展, 2025, 44(6): 3132-3143. |
| [2] | 高峰, 王重阳, 高升, 张雅泓, 陈涛, 年正. Anammox系统的氧化亚氮产生途径及调控[J]. 化工进展, 2025, 44(6): 3579-3591. |
| [3] | 何子晗, 李文譞, 李彦宇, 王雪超, 杨始蓉, 谢慧娜, 李杰. 水环境中抗生素抗性基因研究进展[J]. 化工进展, 2024, 43(S1): 533-544. |
| [4] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
| [5] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
| [6] | 海岩, 周鑫, 李艳. 单级固定床生物膜反应器主流厌氧氨氧化快速启动性能[J]. 化工进展, 2024, 43(4): 2201-2209. |
| [7] | 赵瑞强, 周鑫, 牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展, 2024, 43(3): 1593-1605. |
| [8] | 杨杰源, 朱易春, 赖雅芬, 张超, 田帅, 谢颖. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108. |
| [9] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
| [10] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
| [11] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
| [12] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
| [13] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
| [14] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
| [15] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |