化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5932-5941.DOI: 10.16085/j.issn.1000-6613.2023-1655
• 资源与环境化工 • 上一篇
吴盛源1(), 杨富鑫1(), 谭厚章1, 杜君文2, 李升2
收稿日期:
2023-09-19
修回日期:
2024-03-27
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
杨富鑫
作者简介:
吴盛源(1998—),男,硕士研究生,研究方向为燃煤烟气水分回收。E-mail:shengyuanwu@stu.xjtu.edu.cn。
基金资助:
WU Shengyuan1(), YANG Fuxin1(), TAN Houzhang1, DU Junwen2, LI Sheng2
Received:
2023-09-19
Revised:
2024-03-27
Online:
2024-10-15
Published:
2024-10-29
Contact:
YANG Fuxin
摘要:
我国水资源匮乏、环保要求日益增强,开展燃煤烟气水分回收与颗粒物协同脱除具有十分重要的意义。本文搭建了烟气水分回收实验系统并建立了数值模拟模型,研究了不同因素对收水率和传热系数的影响,发现影响收水率的主要因素为烟气速度和烟气温差,烟气速度3m/s、烟气温差13.2℃时,收水率为51.77%;影响传热系数的主要因素为烟气速度和烟气与换热管壁面的过冷度,烟气速度9.6m/s、冷却水温度35℃时,传热系数为274.84W/(m2·K)。搭建了颗粒物协同脱除实验系统,发现当过冷度从0℃增加到4℃时,颗粒物脱除效率从3.07%增大到29.28%;烟气速度从1.4m/s增大到6.4m/s时,颗粒物脱除效率从29.28%降低至7.40%。
中图分类号:
吴盛源, 杨富鑫, 谭厚章, 杜君文, 李升. 燃煤烟气水分回收和颗粒物同时脱除的实验和数值模拟[J]. 化工进展, 2024, 43(10): 5932-5941.
WU Shengyuan, YANG Fuxin, TAN Houzhang, DU Junwen, LI Sheng. Experimental and numerical simulation of water recovery and particulate matter simultaneous removal from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5932-5941.
参数 | 数值 |
---|---|
尺寸 | 长1400mm、宽500mm、高120mm |
材质 | 聚四氟乙烯 |
换热管排列方式 | 叉排 |
换热管外径/mm | 8 |
换热管壁厚/mm | 0.7 |
横向节距/mm | 30 |
纵向节距/mm | 9.5 |
表1 烟气水分回收实验系统氟塑料换热器参数
参数 | 数值 |
---|---|
尺寸 | 长1400mm、宽500mm、高120mm |
材质 | 聚四氟乙烯 |
换热管排列方式 | 叉排 |
换热管外径/mm | 8 |
换热管壁厚/mm | 0.7 |
横向节距/mm | 30 |
纵向节距/mm | 9.5 |
烟气温度/℃ | 实验收水率/% | 实验传热系数/W·m-2·K-1 |
---|---|---|
48.2 | 25.66 | 209.2 |
55.4 | 30.62 | 217.3 |
58.7 | 30.28 | 209.4 |
表2 不同烟气入口温度收水率和传热系数
烟气温度/℃ | 实验收水率/% | 实验传热系数/W·m-2·K-1 |
---|---|---|
48.2 | 25.66 | 209.2 |
55.4 | 30.62 | 217.3 |
58.7 | 30.28 | 209.4 |
冷却水温度/℃ | 实验值和模拟值误差/% | |
---|---|---|
收水率 | 传热系数 | |
15.65 | 11.49 | 29.17 |
19.50 | 7.83 | 24.74 |
23.60 | 6.60 | 20.31 |
27.45 | 4.76 | 17.23 |
31.30 | 4.88 | 11.88 |
36.25 | 0.81 | 2.37 |
41.25 | 19.27 | 15.63 |
表3 不同工况收水率和传热系数实验值和模拟值误差
冷却水温度/℃ | 实验值和模拟值误差/% | |
---|---|---|
收水率 | 传热系数 | |
15.65 | 11.49 | 29.17 |
19.50 | 7.83 | 24.74 |
23.60 | 6.60 | 20.31 |
27.45 | 4.76 | 17.23 |
31.30 | 4.88 | 11.88 |
36.25 | 0.81 | 2.37 |
41.25 | 19.27 | 15.63 |
管壁温度/℃ | 模拟收水率/% | |
---|---|---|
节距9.5mm | 节距19mm | |
37 | 25.30 | 27.16 |
35 | 28.98 | 32.32 |
33 | 32.86 | 35.36 |
31 | 36.84 | 39.24 |
表4 换热器纵向节距对收水率的影响
管壁温度/℃ | 模拟收水率/% | |
---|---|---|
节距9.5mm | 节距19mm | |
37 | 25.30 | 27.16 |
35 | 28.98 | 32.32 |
33 | 32.86 | 35.36 |
31 | 36.84 | 39.24 |
管壁热导率/W·m-1·K-1 | 收水率/% | 传热系数/W·m-2·K-1 |
---|---|---|
0.26 | 28.98 | 203.36 |
0.34 | 32.79 | 251.93 |
0.42 | 35.60 | 260.07 |
0.50 | 37.69 | 282.09 |
表5 管壁不同热导率对传热系数的影响
管壁热导率/W·m-1·K-1 | 收水率/% | 传热系数/W·m-2·K-1 |
---|---|---|
0.26 | 28.98 | 203.36 |
0.34 | 32.79 | 251.93 |
0.42 | 35.60 | 260.07 |
0.50 | 37.69 | 282.09 |
1 | 朱吉茂, 孙宝东, 张军, 等. “双碳”目标下我国煤炭资源开发布局研究[J]. 中国煤炭, 2023, 49(1): 44-50. |
ZHU Jimao, SUN Baodong, ZHANG Jun, et al. Research on China’s coal resources development layout under the goals of carbon peak and carbon neutrality[J]. China Coal, 2023, 49(1): 44-50. | |
2 | 梁金强, 刘丹竹, 徐庶亮, 等. “双碳”目标下能源安全定量评价方法[J]. 化工进展, 2022, 41(3): 1622-1633. |
LIANG Jinqiang, LIU Danzhu, XU Shuliang, et al. Quantitative evaluation method of energy security under dual carbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1622-1633. | |
3 | 马双忱, 别璇, 孙尧, 等. 湿法脱硫烟气水回收技术研究进展[J]. 洁净煤技术, 2019, 25(1): 64-70. |
MA Shuangchen, BIE Xuan, SUN Yao, et al. Research progress on flue gas water recovery technology in wet FGD[J]. Clean Coal Technology, 2019, 25(1): 64-70. | |
4 | 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考[J]. 化工进展, 2022, 41(3): 1091-1096. |
XU Nanping, ZHAO Jing, LIU Gongping. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. | |
5 | 田路泞, 韩哲楠, 董勇, 等. 燃煤电厂湿烟气余热及水分回收技术研究[J]. 洁净煤技术, 2017, 23(5): 105-110. |
TIAN Luning, HAN Zhenan, DONG Yong, et al. Review of water recovering technologies from flue gas in coal fired power plant[J]. Clean Coal Technology, 2017, 23(5): 105-110. | |
6 | 王翔, 张泽昊, 廖增安, 等. 喷淋降温传热传质模型及其特性规律研究[J]. 中国电机工程学报, 2020, 40(8): 2578-2587. |
WANG Xiang, ZHANG Zehao, LIAO Zengan, et al. Research on heat and mass transfer model and characteristics in the spray scrubber[J]. Proceedings of the CSEE, 2020, 40(8): 2578-2587. | |
7 | 谢庆亮.间接冷凝技术在1000MW燃煤机组湿烟气水回收的应用[J]. 节能与环保, 2021(3): 89-91. |
XIE Qingliang.The application of indirect condensation technology in water recovery from wet flue gas on a 1000MW coal-fired power unit[J]. Energy Conservation & Environmental Protection, 2021(3): 89-91. | |
8 | 笪耀东, 车得福, 庄正宁, 等. 高水分烟气对流冷凝换热模拟实验研究[J]. 工业锅炉, 2003(1): 12-15, 34. |
Yaodong DA, CHE Defu, ZHUANG Zhengning, et al. An experimental study on forced convection-condensation heat transfer of the flue gas with high moisture[J]. Industrial Boiler, 2003(1): 12-15, 34. | |
9 | 雷承勇, 王恩禄, 黄晓宇, 等. 燃煤电站烟气水分回收技术试验研究[J]. 锅炉技术, 2011, 42(1): 5-8, 22. |
LEI Chengyong, WANG Enlu, HUANG Xiaoyu, et al. Experiment study on recovery of water steam in the flue gas of brown coal-fired power plant[J]. Boiler Technology, 2011, 42(1): 5-8, 22. | |
10 | 杨建国, 许明路, 陈永辉, 等. 燃煤电厂烟气冷凝法水回收试验研究[J]. 动力工程学报, 2020, 40(4): 342-348. |
YANG Jianguo, XU Minglu, CHEN Yonghui, et al. Experimental study on water recovery from flue gas condensation in coal-fired power plants[J]. Journal of Chinese Society of Power Engineering, 2020, 40(4): 342-348. | |
11 | 熊英莹, 谭厚章, 许伟刚, 等. 火电厂烟气潜热和凝结水回收的试验研究[J]. 热力发电, 2015, 44(6): 77-81. |
XIONG Yingying, TAN Houzhang, XU Weigang, et al. Experimental study on latent heat and condensate recovery from flue gas in coal-fired power plants[J]. Thermal Power Generation, 2015, 44(6): 77-81. | |
12 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128-134. |
TAN Houzhang, XIONG Yingying, WANG Yibin, et al. Study on synergistic removal of multi-pollutants by WPTA[J]. Electric Power, 2017, 50(2): 128-134. | |
13 | 徐钢, 陈袁, 牛晨巍, 等. 氟塑料换热器传热特性实验研究与模型优化[J]. 中国电机工程学报, 2017, 37(8): 2297-2304. |
XU Gang, CHEN Yuan, NIU Chenwei, et al. Optimization of heat transfer model and performance analysis of fluorine plastic heat exchangers[J]. Proceedings of the CSEE, 2017, 37(8): 2297-2304. | |
14 | 李剑锋, 涂淑平, 孙文哲. 氟塑料换热器的研究及应用进展[J]. 应用化工, 2019, 48(3): 685-687, 693. |
LI Jianfeng, TU Shuping, SUN Wenzhe. Research and application progress of fluoroplastic heat exchanger[J]. Applied Chemical Industry, 2019, 48(3): 685-687, 693. | |
15 | SHAMSI Syed, NEGASH Assmelash, CHO Gyu, et al. Waste heat and water recovery system optimization for flue gas in thermal power plants[J]. Sustainability, 2019, 11(7): 1881. |
16 | CEVALLOS Juan Gabriel, BERGLES Arthur E, Avram BAR-COHEN, et al. Polymer heat exchangers—History, opportunities, and challenges[J]. Heat Transfer Engineering, 2012, 33(13): 1075-1093. |
17 | HE Youliang, WALSH Dan, SHI Chao. Fluoropolymer composite coating for condensing heat exchangers: Characterization of the mechanical, tribological and thermal properties[J]. Applied Thermal Engineering, 2015, 91: 387-398. |
18 | CIERPISZ Mitchell, MCPHEDRAN Joselyne, HE Youliang, et al. Characterization of graphene-filled fluoropolymer coatings for condensing heat exchangers[J]. Journal of Composite Materials, 2021, 55(29): 4305-4320. |
19 | 满孝增. 氟塑料换热管束传热与流动计算及数值模拟[D]. 北京: 华北电力大学, 2017. |
MAN Xiaozeng. Calculation and numerical simulation of heat transfer and flow for fluorine plastic heat transfer tube bundle[D]. Beijing: North China Electric Power University, 2017. | |
20 | 赵国春. 聚偏氟乙烯换热器换热性能实验研究与数值模拟[D]. 北京: 北京建筑大学, 2015. |
ZHAO Guochun. Experimental Study and numerical simulation of heat transfer performance of PVDF heat exchanger[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015. | |
21 | 李健, 张莉. 湿烟气冷凝换热的数值模拟[J]. 动力工程学报, 2021, 41(2): 129-135, 172. |
LI Jian, ZHANG Li. Numerical simulation on condensation heat transfer process of wet flue gas[J]. Journal of Chinese Society of Power Engineering, 2021, 41(2): 129-135, 172. | |
22 | 陈增桥. 竖管外含不凝气体蒸汽凝结换热特性及强化换热实验研究[D]. 济南: 山东大学, 2019. |
CHEN Zengqiao. Experimental study on condensation heat transfer characteristics and enhanced heat transfer of steam with non-condensable gas outside vertical tubes[D]. Jinan: Shandong University, 2019. | |
23 | TAN Houzhang, WANG Yibin, CAO Ruijie, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J]. Applied Thermal Engineering, 2018, 130: 1208-1214. |
24 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚技术协同湿式电除尘器脱除微细颗粒物研究[J]. 工程热物理学报, 2016, 37(12): 2710-2714. |
TAN Houzhang, XIONG Yingying, WANG Yibin, et al. Investigation on fine particulate matters removal by using wet phase transition agglomeration technology cooperated with wet electro static precipitator[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2710-2714. | |
25 | 陈哲. 一种组合式除雾器的实验与数值模拟研究[D]. 北京: 华北电力大学, 2021. |
CHEN Zhe. Experimental and numerical simulation study on a combined mist eliminator[D]. Beijing: North China Electric Power University, 2021. | |
26 | 梁佳鹏, 左海滨, 张万龙, 等. 石墨烯-PFA复合材料换热器与金属换热器的传热性能对比[J]. 热科学与技术, 2022, 21(1): 51-56. |
LIANG Jiapeng, ZUO Haibin, ZHANG Wanlong, et al. Comparison of heat transfer performance between graphene-PFA composite material heat exchanger and metal heat exchanger[J]. Journal of Thermal Science and Technology, 2022, 21(1): 51-56. | |
27 | 王剑飞, 宋冠强, 赵贯甲. 烟气冷凝器换热特性实验研究[J]. 锅炉技术, 2023, 54(1): 9-14. |
WANG Jianfei, SONG Guanqiang, ZHAO Guanjia. Experimental study on heat transfer characteristics of flue gas condenser[J]. Boiler Technology, 2023, 54(1): 9-14. | |
28 | 许明路. 燃煤电厂烟气冷凝法水回收及颗粒物控制试验研究[D]. 杭州: 浙江大学, 2020. |
XU Minglu. Experimental study on water recovery and particle matter control of flue gas condensation in coal-fired power plants[D]. Hangzhou: Zhejiang University, 2020. | |
29 | 徐煦. 锅炉机组烟气对流冷凝换热特性研究[D]. 上海: 上海交通大学, 2016. |
XU Xu. Study on heat transfer characteristcs of flue gas of boilter units[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
30 | 彭越宇. 燃煤锅炉烟气中水分回收利用研究[D]. 杭州: 浙江大学, 2018. |
PENG Yueyu. Research on recovery and utilization of water from coal-fired boiler flue gas[D]. Hangzhou: Zhejiang University, 2018. | |
31 | 于琦. 含湿烟气冷凝换热特性研究[D]. 吉林: 东北电力大学, 2021. |
YU Qi. Study on condensation heat transfer characteristics of wet flue gas[D]. Jilin: Northeast Electric Power University, 2021. | |
32 | 张经伟, 刘永阳, 刘东, 等. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481. |
ZHANG Jingwei, LIU Yongyang, LIU Dong, et al. Condensation performance of low temperature boiler flue gas containing SO2 on vertical wall[J] CIESC Journal, 2021, 72(S1): 475-481. | |
33 | ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279:137-146. |
34 | LEVY Edward, BILIRGEN Harun, JEONG Kwangkook, et al. Recovery of water from boiler flue gas[R]. Bethlehem, Energy Research Center (Lehigh University), 2008. |
35 | 章平衡, 李凯, 龚俊, 等. 椭圆管氟塑钢空气预热器烟气侧流动与换热特性数值研究[J]. 热力发电, 2021, 50(10): 116-123. |
ZHANG Pingheng, LI Kai, GONG Jun, et al. Numerical study on flow and heat transfer characteristics of flue gas side for a fluoroplastic steel air preheater with elliptical tubes[J]. Thermal Power Generation, 2021, 50(10): 116-123. | |
36 | TROJANOWSKI R, BUTCHER T, WOREK M, et al. Polymer heat exchanger design for condensing boiler applications[J]. Applied Thermal Engineering, 2016, 103: 150-158. |
37 | 王建朋, 段璐, 王乃继, 等. 燃煤锅炉烟气脱硫技术对颗粒物排放影响研究进展[J]. 洁净煤技术, 2020, 26(2): 34-42. |
WANG Jianpeng, DUAN Lu, WANG Naiji, et al. Research progress on the effect of flue gas desulfurization technology of coal-fired boiler on particulate matter emission[J]. Clean Coal Technology, 2020, 26(2): 34-42. | |
38 | 曾子轮, 王超, 李鸿源, 等. 超临界受热面水侧颗粒沉积的数值模拟研究[J]. 动力工程学报, 2022, 42(9): 806-811. |
ZENG Zilun, WANG Chao, LI Hongyuan, et al. Numerical simulation of particle deposition on supercritical heating surface[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 806-811. | |
39 | 李曌. 不同压差下颗粒物穿透性能研究[D]. 太原: 太原理工大学, 2021. |
LI Zhao. Study on the penetration properties of particulate matter under different pressure differences[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
40 | 林雅军. 湍流增湿条件下超细颗粒团聚行为研究[D]. 青岛: 中国石油大学(华东), 2020. |
LIN Yajun. Study on ultra-fine particle aggregation behavior under turbulent and humidied conditions[D]. Qingdao: China University of Petroleum (Huadong), 2020. | |
41 | 刘林虎, 杨永斌, 冯孝峰, 等. 燃煤机组烟气冷凝对可凝结颗粒脱除特性的影响[J]. 洁净煤技术, 2023, 29(S2): 510-513. |
LIU Linhu, YANG Yongbin, FENG Xiaofeng, et al. Effect of flue gas condensation on the synergistic removal of condensable particulate matter in coal-fired units[J]. Clean Coal Technology, 2023, 29(S2): 510-513. |
[1] | 马永丽, 李沐阳, 马子皓, 王浩然, 王茂隆, 费瑶寒, 张露滨, 刘明言. 火星上的气固流态化模拟实验[J]. 化工进展, 2024, 43(8): 4203-4209. |
[2] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[3] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 蔡萌, 李新亚. 堵塞工况下水力旋流器流场特性及性能分析[J]. 化工进展, 2024, 43(7): 3776-3786. |
[5] | 马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449. |
[6] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
[7] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[8] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[9] | 祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710. |
[10] | 赵吉隆, 郭宇翔, 陈宏霞, 袁达忠, 杜小泽. 竖直铯热管传热特性的实验和数值模拟[J]. 化工进展, 2024, 43(4): 1711-1719. |
[11] | 孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103. |
[12] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[13] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[14] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[15] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |