化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5633-5641.DOI: 10.16085/j.issn.1000-6613.2023-1542
• 材料科学与技术 • 上一篇
温志鹏(), 柯思因, 杨惠林, 李泳, 余传明(), 廖铭能()
收稿日期:
2023-09-04
修回日期:
2023-11-17
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
余传明,廖铭能
作者简介:
温志鹏(1998—),男,硕士研究生,研究方向为水处理功能材料。E-mail:wzp15768389775@163.com。
基金资助:
WEN Zhipeng(), KE Siyin, YANG Huilin, LI Yong, YU Chuanming(), LIAO Mingneng()
Received:
2023-09-04
Revised:
2023-11-17
Online:
2024-10-15
Published:
2024-10-29
Contact:
YU Chuanming, LIAO Mingneng
摘要:
工业含油废水的排放和海洋溢油事故的发生导致水体区域环境遭到了严重破坏,为了实现高效且低成本的油水分离,本研究利用高内相乳液模板法构筑了一种超疏水多孔泡沫。利用扫描电子显微镜、压泵仪、傅里叶变换红外光谱、X射线光电子能谱对材料的物理、化学结构进行了表征,测试了材料的润湿性:水接触角达146.8°,水滚动角为6°,油接触角几乎为0°,显示出超疏水-超亲油特性,且材料的润湿性可通过调整单体之间的配比进行调控。材料对不同类型的油或有机试剂,吸收倍率在30.17~76.65g/g,显示出优异的吸油能力。材料能有效清理水面浮油和水下重油,并可循环利用,经历10次吸附-脱附实验后,油品的回收效率依然维持在90%左右。进一步研究了材料对油品的吸附过程,结果表明,其对柴油和乙醇的吸附过程更符合伪一阶吸附动力学模型(R2>0.99)。综上表明,该材料是一种吸油倍率高、油回收效率良好且可重复利用的超疏水-超亲油多孔材料,在油水分离领域具有广阔的应用前景。
中图分类号:
温志鹏, 柯思因, 杨惠林, 李泳, 余传明, 廖铭能. 基于高内相乳液模板法构筑的超疏水多孔泡沫[J]. 化工进展, 2024, 43(10): 5633-5641.
WEN Zhipeng, KE Siyin, YANG Huilin, LI Yong, YU Chuanming, LIAO Mingneng. Superhydrophobic porous foams constructed based on the high internal phase emulsion template method[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5633-5641.
样品编号 | TFEMA/g | DVB/g | 超纯水/mL |
---|---|---|---|
1 | 0.10 | 0.40 | 10 |
2 | 0.20 | 0.30 | 10 |
3 | 0.25 | 0.25 | 10 |
4 | 0.30 | 0.20 | 10 |
5 | 0.30 | 0.20 | 15 |
6 | 0.30 | 0.20 | 20 |
表1 材料的配比
样品编号 | TFEMA/g | DVB/g | 超纯水/mL |
---|---|---|---|
1 | 0.10 | 0.40 | 10 |
2 | 0.20 | 0.30 | 10 |
3 | 0.25 | 0.25 | 10 |
4 | 0.30 | 0.20 | 10 |
5 | 0.30 | 0.20 | 15 |
6 | 0.30 | 0.20 | 20 |
文献 | 材料 | 吸附油品 | 吸油倍率/g·g-1 |
---|---|---|---|
Wang等[ | 木质气凝胶 | 乙醇 | 13 |
乙酸乙酯 | 15 | ||
Khosravi等[ | 疏水海绵 | 四氯化碳 | 58 |
Gu等[ | 纳米粒子 | 柴油 | 3.63 |
Wang等[ | 碳海绵 | 四氯化碳 | 43 |
本文 | 超疏水多孔泡沫 (样品6) | 乙醇 | 30.17 |
乙酸乙酯 | 41.96 | ||
四氯化碳 | 76.65 | ||
柴油 | 33.03 |
表2 不同吸油材料的吸油倍率
文献 | 材料 | 吸附油品 | 吸油倍率/g·g-1 |
---|---|---|---|
Wang等[ | 木质气凝胶 | 乙醇 | 13 |
乙酸乙酯 | 15 | ||
Khosravi等[ | 疏水海绵 | 四氯化碳 | 58 |
Gu等[ | 纳米粒子 | 柴油 | 3.63 |
Wang等[ | 碳海绵 | 四氯化碳 | 43 |
本文 | 超疏水多孔泡沫 (样品6) | 乙醇 | 30.17 |
乙酸乙酯 | 41.96 | ||
四氯化碳 | 76.65 | ||
柴油 | 33.03 |
模型名称 | 表达式 | 油品类型 | 参数 | ||
---|---|---|---|---|---|
R2 | 斜率 | 截距 | |||
伪一阶吸附动力学模型 | 乙醇 | 0.9921 | -0.03324 | 3.264 | |
柴油 | 0.9945 | -0.02874 | 3.050 | ||
伪二阶吸附动力学模型 | 乙醇 | 0.9664 | 0.01570 | 0.2804 | |
柴油 | 0.9793 | 0.2405 | 0.4369 | ||
Elovich吸附动力学模型 | 乙醇 | 0.9816 | 6.322 | 2.053 | |
柴油 | 0.9695 | 5.704 | -0.7562 | ||
Weber-Morris吸附动力学模型 | 乙醇 | 0.9514 | 2.510 | 7.120 | |
柴油 | 0.9717 | 2.002 | 4.768 |
表3 不同吸附动力学模型的模拟结果
模型名称 | 表达式 | 油品类型 | 参数 | ||
---|---|---|---|---|---|
R2 | 斜率 | 截距 | |||
伪一阶吸附动力学模型 | 乙醇 | 0.9921 | -0.03324 | 3.264 | |
柴油 | 0.9945 | -0.02874 | 3.050 | ||
伪二阶吸附动力学模型 | 乙醇 | 0.9664 | 0.01570 | 0.2804 | |
柴油 | 0.9793 | 0.2405 | 0.4369 | ||
Elovich吸附动力学模型 | 乙醇 | 0.9816 | 6.322 | 2.053 | |
柴油 | 0.9695 | 5.704 | -0.7562 | ||
Weber-Morris吸附动力学模型 | 乙醇 | 0.9514 | 2.510 | 7.120 | |
柴油 | 0.9717 | 2.002 | 4.768 |
1 | DAI Lei, CHENG Ting, WANG Yan, et al. A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments[J]. Separation and Purification Technology, 2019, 225: 129-135. |
2 | ASIF Zunaira, CHEN Zhi, AN Chunjiang, et al. Environmental impacts and challenges associated with oil spills on shorelines[J]. Journal of Marine Science and Engineering, 2022, 10(6): 762. |
3 | HU Jiang, ZHU Jundong, GE Shengzhuo, et al. Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation[J]. Surface and Coatings Technology, 2020, 385: 125361. |
4 | LIU Zitian, MA Wensong, LIN Ligang, et al. Mussel- and nacre-inspired dual-bionic alginate-based hydrogel coating with multi-matrix applicability, high separation stability and antifouling performance for oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 246: 125686. |
5 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
6 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(0): 546-551. |
7 | YU Chuanming, LIN Wenyu, JIANG Jine, et al. Preparation of a porous superhydrophobic foam from waste plastic and its application for oil spill cleanup[J]. RSC Advances, 2019, 9(65): 37759-37767. |
8 | ZHAO Caimei, CHEN Lei, YU Chuanming, et al. Fabrication of hydrophobic NiFe2O4@poly(DVB-LMA) sponge via a pickering emulsion template method for oil/water separation[J]. Soft Matter, 2021, 17(8): 2327-2339. |
9 | YANG Xiaocang, YIN Zhengqiao, ZHANG Xiaoyu, et al. Fabrication of emulsion-templated macroporous poly(ε-caprolactone) towards highly effective and sustainable oil/water separation[J]. Polymer, 2020, 204: 122852. |
10 | TU Shuhua, CHEN Min, WU Limin. Robust porous organosilica monoliths via a surfactant-free high internal phase emulsion process for efficient oil-water separation[J]. Journal of Colloid and Interface Science, 2020, 566: 338-346. |
11 | WANG Fan, MA Rongrong, TIAN Yaoqi. Fabrication of superhydrophobic/oleophilic starch cryogel via a simple sol-gel immersion process for removing oil from water[J]. Industrial Crops and Products, 2022, 184: 115010. |
12 | LIU Meng, TAN Xinyu, LI Xinyi, et al. Transparent superhydrophobic EVA/SiO2/PTFE/KH-570 coating with good mechanical robustness, chemical stability, self-cleaning effect and anti-icing property fabricated by facile dipping method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130624. |
13 | TIAN Jie, BAO Jiaxin, LI Lianhui, et al. Facile fabrication of superhydrophobic coatings with superior corrosion resistance on LA103Z alloy by one-step electrochemical synthesis[J]. Surface and Coatings Technology, 2023, 452: 129090. |
14 | SHAO Chuang, JIANG Mingliang, ZHANG Jingpeng, et al. Construction of a superhydrophobic wood surface coating by layer-by-layer assembly: Self-adhesive properties of polydopamine[J]. Applied Surface Science, 2023, 609: 155259. |
15 | ZHENG Jiawei, YANG Jinchuan, CAO Wen, et al. Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods[J]. Ceramics International, 2022, 48(21): 32143-32151. |
16 | TANG Wei, JIAN Yulan, SHAO Mingjun, et al. A novel two-step strategy to construct multifunctional superhydrophobic wood by liquid-vapor phase deposition of methyltrimethoxysilane for improving moisture resistance, anti-corrosion and mechanical strength[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666: 131314. |
17 | LIU Jun, GUO Hong, SUN Zhiye, et al. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying[J]. Journal of Membrane Science, 2021, 634: 119434. |
18 | KABALNOV Alexey. Ostwald ripening and related phenomena[J]. Journal of Dispersion Science and Technology, 2001, 22(1): 1-12. |
19 | PIORKOWSKI Daniel T, MCCLEMENTS David Julian. Beverage emulsions: Recent developments in formulation, production, and applications[J]. Food Hydrocolloids, 2014, 42: 5-41. |
20 | PARK Sun Hee, HONG Chi Rac, CHOI Seung Jun. Prevention of Ostwald ripening in orange oil emulsions: Impact of surfactant type and Ostwald ripening inhibitor type[J]. LWT, 2020, 134: 110180. |
21 | CARRANZA Arturo, PÉREZ-GARCÍA María G, SONG Kunlin, et al. Deep-eutectic solvents as MWCNT delivery vehicles in the synthesis of functional poly(HIPE) nanocomposites for applications as selective sorbents[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31295-31303. |
22 | 马艳明. 甲基丙烯酸三氟乙酯改性聚合物的合成、表征及性能研究[D]. 济南: 济南大学, 2013. |
MA Yanming. Fluoropolymer based on trifluoroethyl methacrylate (TFEMA): Synthesis, characterization and properties[D]. Jinan: University of Jinan, 2013. | |
23 | HOON Kim Kyung, HOON Cho Jong, Hwang Jin UNG, et al. A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 48-54. |
24 | KHALAF Mai M, EL-LATEEF Hany M ABD, Van-Duong DAO, et al. Electrocatalysis of methanol oxidation in alkaline electrolytes over novel amorphous Fe/Ni biphosphate material prepared by different techniques[J]. Nanomaterials, 2022, 12(19): 3429. |
25 | LEE Chunwoo, YAMAGUCHI Satoshi, IMAZATO Satoshi. Quantitative evaluation of the degradation amount of the silane coupling layer of CAD/CAM resin composites by water absorption[J]. Journal of Prosthodontic Research, 2023, 67(1): 55-61. |
26 | Tae-Gyu WOO, PARK Il-Song, JUNG Kwang-Hee, et al. Effect of N2 plasma treatment on the adhesion of Cu/Ni thin film to polyimide[J]. Metals and Materials International, 2011, 17(5): 789-795. |
27 | HE Chao, ZHAO Jun, YANG Yanhui, et al. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493. |
28 | DE A DIAS Frederico G, VEIGA Amanda G, GOMES Antônio Pedro A DA C P, et al. Using XPS and FTIR spectroscopies to investigate polyamide 11 degradation on aging flexible risers[J]. Polymer Degradation and Stability, 2022, 195: 109787. |
29 | KEHRER Matthias, DUCHOSLAV Jiri, HINTERREITER Andreas, et al. XPS investigation on the reactivity of surface imine groups with TFAA[J]. Plasma Processes and Polymers, 2019, 16(4): 1800160. |
30 | TAO Chengan, WANG Jianfang, QIN Shiqiao, et al. Fabrication of pH-sensitive graphene oxide-drug supramolecular hydrogels as controlled release systems[J]. Journal of Materials Chemistry, 2012, 22(47): 24856-24861. |
31 | ZOU Yanqi, ZHOU Xiaoyu, XIE Liuhong, et al. Vertically-ordered mesoporous silica films grown on boron nitride-graphene composite modified electrodes for rapid and sensitive detection of carbendazim in real samples[J]. Frontiers in Chemistry, 2022, 10: 939510. |
32 | SUN Lidong, PENG Cong, KONG Lingchen, et al. Interface-structure-modulated CuF2/CF x composites for high-performance lithium primary batteries[J]. Energy & Environmental Materials, 2023, 6(2): e12323. |
33 | WANG Kaili, LIU Xiaorong, TAN Yi, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation[J]. Chemical Engineering Journal, 2019, 371: 769-780. |
34 | KHOSRAVI Maryam, AZIZIAN Saeid. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25326-25333. |
35 | GU Junjun, JIANG Wei, WANG Fenghe, et al. Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites[J]. Applied Surface Science, 2014, 301: 492-499. |
36 | WANG Ni, DENG Ziwei. Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation[J]. Materials Research Bulletin, 2019, 115: 19-26. |
37 | YU Chuanming, JIANG Jin'e, LIU Yeyuan, et al. Facile fabrication of compressible, magnetic and superhydrophobic poly(DVB-MMA) sponge for high-efficiency oil-water separation[J]. Journal of Materials Science, 2021, 56(4): 3111-3126. |
38 | MUSTAPHA S, SHUAIB D T, NDAMITSO M M, et al. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(Ⅱ), Cd(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) ions from aqueous solutions using Albizia lebbeck pods[J]. Applied Water Science, 2019, 9(6): 142. |
39 | AMER Mohammad W, AHMAD Rafat A, AWWAD Akl M. Biosorption of Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Pb(Ⅱ) ions from aqueous solution by Sophora japonica pods powder[J]. International Journal of Industrial Chemistry, 2015, 6(1): 67-75. |
40 | PATEL Himanshu. Elution profile of cationic and anionic adsorbate from exhausted adsorbent using solvent desorption[J]. Scientific Reports, 2022, 12(1): 1665. |
41 | ADEWOYE T L, OGUNLEYE O O, ABDULKAREEM A S, et al. Optimization of the adsorption of total organic carbon from produced water using functionalized multi-walled carbon nanotubes[J]. Heliyon, 2021, 7(1): e05866. |
42 | WEN Zhipeng, YANG Huilin, Mingzhe LYU, et al. A compressible porous superhydrophobic material constructed by a multi-template high internal phase emulsion method for oil-water separation[J]. RSC Advances, 2023, 13(37): 25920-25929. |
43 | RAO V Trinadha, SUNEEL V, ALEX M J, et al. Assessment of MV Wakashio oil spill off Mauritius, Indian Ocean through satellite imagery: A case study[J]. Journal of Earth System Science, 2022, 131(1): 21. |
44 | WHITE Helen K, HSING Pen-Yuan, CHO Walter, et al. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20303-20308. |
[1] | 王文刚, 钱裕洁, 皮秋月, 王艳红, 侯秀良, 徐荷澜. 聚合松香辅助制备聚丙烯熔喷纤维膜及耐久超疏水改性[J]. 化工进展, 2024, 43(9): 5123-5132. |
[2] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[3] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
[4] | 李莉, 蔡鑫宇, 陈寅杰, 张文启, 李光辉, 饶品华. 超疏水-高疏油SiC膜的制备及性能[J]. 化工进展, 2024, 43(8): 4516-4522. |
[5] | 任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463. |
[6] | 王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856. |
[7] | 金彬浩, 朱小倩, 柯天, 张治国, 鲍宗必, 任其龙, 苏宝根, 杨启炜. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881. |
[8] | 路广军, 韩晋钢, 陈英, 马志斌. 镁渣基多孔材料的制备及其对废水中Pb2+的吸附性能[J]. 化工进展, 2024, 43(4): 2126-2134. |
[9] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
[10] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[11] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[12] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[13] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[14] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[15] | 孔祥如, 张肖阳, 孙鹏翔, 崔琳, 董勇. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |