化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5857-5866.DOI: 10.16085/j.issn.1000-6613.2023-1496
• 资源与环境化工 • 上一篇
马晶1,2(), 马玉龙1(), 朱莉1, 乔松1,2, 孙永刚1, 吉文欣1
收稿日期:
2023-08-28
修回日期:
2023-12-18
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
马玉龙
作者简介:
马晶(1996—),女,硕士研究生,研究方向为资源循环利用与绿色化工。E-mail:majing_5@126.com。
基金资助:
MA Jing1,2(), MA Yulong1(), ZHU Li1, QIAO Song1,2, SUN Yonggang1, JI Wenxin1
Received:
2023-08-28
Revised:
2023-12-18
Online:
2024-10-15
Published:
2024-10-29
Contact:
MA Yulong
摘要:
煤气化渣的减量化、资源化和无害化是目前煤化工行业的研究热点,对其物理化学特性及重金属含量与环境风险的研究是实现以上目标的基础。以宁东基地某煤化工生产企业的煤气化渣为研究对象,研究了粗渣和细渣的结构组成及主要金属元素赋存形态与环境风险。结果表明,煤气化渣由残炭和灰分(主要成分为SiO2和Al2O3,质量分数分别为50%和15%左右)组成。粗渣灰分含量高(质量分数>90%)且颗粒致密光滑,细渣残炭含量高(质量分数约20%)且孔隙丰富。含量高于500µg/g的金属元素主要富集在粗渣中,低于200µg/g的金属元素在细渣中富集。细渣中金属元素稳定性较低,特别是Cd,其非稳定态占比高于70%,且风险评价指数为34.16,环境风险高。本研究旨为煤气化渣的资源化和无害化处理提供基础数据。
中图分类号:
马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 煤气化渣结构组成及其主要金属元素赋存形态[J]. 化工进展, 2024, 43(10): 5857-5866.
MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Structure composition of coal gasification slag and speciation of main metals in coal gasification slag[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5857-5866.
步骤 | 形态 | 操作方法 | 反应条件 |
---|---|---|---|
1 | 可交换态 | 1g样品加40mL 1mol/L CH3COONa | 室温振荡16h |
2 | 碳酸盐结合态 | 步骤1残渣加40mL 0.11mol/L CH3COOH | 室温振荡16h |
3 | 铁锰氧化物态 | 步骤2残渣加40mL 0.1mol/L NH2OH·HCl,pH=2 | 室温振荡16h |
4 | 有机态 | ①步骤3残渣加10mL 8.8mol/L H2O2 | 室温间歇振荡1h,85℃水浴中1h, 加热至溶液剩余2~3mL。重复此步骤一次 |
②上一步残渣加50mL 1mol/L NH4Ac,pH=2 | 室温振荡16h | ||
5 | 残渣态 | HF+HCl+HClO4+HNO3 | 消解至澄清透明 |
表1 改进的BCR连续提取法操作步骤
步骤 | 形态 | 操作方法 | 反应条件 |
---|---|---|---|
1 | 可交换态 | 1g样品加40mL 1mol/L CH3COONa | 室温振荡16h |
2 | 碳酸盐结合态 | 步骤1残渣加40mL 0.11mol/L CH3COOH | 室温振荡16h |
3 | 铁锰氧化物态 | 步骤2残渣加40mL 0.1mol/L NH2OH·HCl,pH=2 | 室温振荡16h |
4 | 有机态 | ①步骤3残渣加10mL 8.8mol/L H2O2 | 室温间歇振荡1h,85℃水浴中1h, 加热至溶液剩余2~3mL。重复此步骤一次 |
②上一步残渣加50mL 1mol/L NH4Ac,pH=2 | 室温振荡16h | ||
5 | 残渣态 | HF+HCl+HClO4+HNO3 | 消解至澄清透明 |
环境风险等级 | RAC |
---|---|
低风险 | ≤1 |
中等风险 | 1~10 |
较高风险 | 10~30 |
高风险 | 30~50 |
极高风险 | ≥50 |
表2 重金属的环境风险等级
环境风险等级 | RAC |
---|---|
低风险 | ≤1 |
中等风险 | 1~10 |
较高风险 | 10~30 |
高风险 | 30~50 |
极高风险 | ≥50 |
样品 | 工业分析 | 元素分析 | |||||
---|---|---|---|---|---|---|---|
M① | A② | LOI③ | C | H | N | S | |
细渣 | 52.12±5.68 | 77.72±4.15 | 22.34±4.50 | 13.78±9.32 | 0.25±0.06 | 0.86±0.62 | 0.44±0.09 |
粗渣 | 8.02±1.33 | 96.00±3.97 | 3.35±3.28 | 4.00±2.72 | 0.20±0.02 | 1.00±0.93 | 0.62±0.10 |
表3 工业分析和元素分析(质量分数) (%)
样品 | 工业分析 | 元素分析 | |||||
---|---|---|---|---|---|---|---|
M① | A② | LOI③ | C | H | N | S | |
细渣 | 52.12±5.68 | 77.72±4.15 | 22.34±4.50 | 13.78±9.32 | 0.25±0.06 | 0.86±0.62 | 0.44±0.09 |
粗渣 | 8.02±1.33 | 96.00±3.97 | 3.35±3.28 | 4.00±2.72 | 0.20±0.02 | 1.00±0.93 | 0.62±0.10 |
地区 | 工艺 | 类型 | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
宁夏[ | GE① | 细渣 | 44.7 | 19.1 | 12.6 | 13.5 | 2 | 4.5 | 2.1 | 1.04 |
粗渣 | 37.6 | 16.9 | 15.9 | 19.5 | 1.3 | 5 | 2.7 | 0.77 | ||
GSP② | 细渣 | 57 | 22.4 | 6.9 | 5.5 | 2.6 | 2.8 | 1.2 | 1.23 | |
粗渣 | 56.4 | 20 | 7.7 | 8.2 | 1.9 | 3.1 | 1.4 | 0.88 | ||
陕西[ | GE | 细渣 | 32.2 | 8.87 | 2.49 | 4.33 | 1.23 | 0.69 | 0.54 | 0.52 |
粗渣 | 41.12 | 12.72 | 4.98 | 12.88 | 1.94 | 1.23 | 1.49 | 0.61 | ||
内蒙古[ | — | 细渣 | 32.01 | 12.88 | 11.48 | 11.19 | — | 0.86 | 3.22 | — |
粗渣 | 27.33 | 14.43 | 23.9 | 19.04 | — | 0.94 | 2.13 | — | ||
新疆[ | OFB③ | 细渣 | 35.02 | 18.09 | 20.38 | 16.23 | 0.18 | 5.44 | 1.15 | 0.8 |
粗渣 | 34.7 | 14.42 | 23.25 | 14.97 | 0.38 | 3.13 | 6.25 | 0.69 | ||
本研究 | 原料煤[ | 48.20 | 18.20 | 7.80 | 8.20 | 1.60 | 2.90 | 1.50 | 0.90 | |
GSP | 细渣 | 50.38±5.55 | 14.22±4.40 | 8.71±3.73 | 8.44±3.31 | 2.70±0.99 | 3.28±1.32 | 1.79±0.49 | 1.16±0.45 | |
粗渣 | 50.93±3.90 | 16.77±1.26 | 12.45±3.43 | 10.07±1.08 | 2.16±0.30 | 2.61±0.68 | 1.61±0.29 | 1.11±0.14 |
表4 不同地区不同气化工艺产生的煤气化渣及本研究原料煤的主要化学组成(质量分数) (%)
地区 | 工艺 | 类型 | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
宁夏[ | GE① | 细渣 | 44.7 | 19.1 | 12.6 | 13.5 | 2 | 4.5 | 2.1 | 1.04 |
粗渣 | 37.6 | 16.9 | 15.9 | 19.5 | 1.3 | 5 | 2.7 | 0.77 | ||
GSP② | 细渣 | 57 | 22.4 | 6.9 | 5.5 | 2.6 | 2.8 | 1.2 | 1.23 | |
粗渣 | 56.4 | 20 | 7.7 | 8.2 | 1.9 | 3.1 | 1.4 | 0.88 | ||
陕西[ | GE | 细渣 | 32.2 | 8.87 | 2.49 | 4.33 | 1.23 | 0.69 | 0.54 | 0.52 |
粗渣 | 41.12 | 12.72 | 4.98 | 12.88 | 1.94 | 1.23 | 1.49 | 0.61 | ||
内蒙古[ | — | 细渣 | 32.01 | 12.88 | 11.48 | 11.19 | — | 0.86 | 3.22 | — |
粗渣 | 27.33 | 14.43 | 23.9 | 19.04 | — | 0.94 | 2.13 | — | ||
新疆[ | OFB③ | 细渣 | 35.02 | 18.09 | 20.38 | 16.23 | 0.18 | 5.44 | 1.15 | 0.8 |
粗渣 | 34.7 | 14.42 | 23.25 | 14.97 | 0.38 | 3.13 | 6.25 | 0.69 | ||
本研究 | 原料煤[ | 48.20 | 18.20 | 7.80 | 8.20 | 1.60 | 2.90 | 1.50 | 0.90 | |
GSP | 细渣 | 50.38±5.55 | 14.22±4.40 | 8.71±3.73 | 8.44±3.31 | 2.70±0.99 | 3.28±1.32 | 1.79±0.49 | 1.16±0.45 | |
粗渣 | 50.93±3.90 | 16.77±1.26 | 12.45±3.43 | 10.07±1.08 | 2.16±0.30 | 2.61±0.68 | 1.61±0.29 | 1.11±0.14 |
样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
粗渣 | 7.43±1.65 | 10.01±6.97 | 0.03±0.02 |
细渣 | 123.92±30.76 | 4.95±1.37 | 0.11±0.06 |
表5 煤气化粗渣与细渣的孔道结构特征
样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
粗渣 | 7.43±1.65 | 10.01±6.97 | 0.03±0.02 |
细渣 | 123.92±30.76 | 4.95±1.37 | 0.11±0.06 |
样品 | ID1/IG | IG/IAll | I(D3+D4)/IG | ID/IG |
---|---|---|---|---|
粗渣 | 2.83 | 0.20 | 0.43 | 2.52 |
细渣 | 2.87 | 0.15 | 1.06 | 2.33 |
表6 煤气化粗渣与细渣的Raman分析结果
样品 | ID1/IG | IG/IAll | I(D3+D4)/IG | ID/IG |
---|---|---|---|---|
粗渣 | 2.83 | 0.20 | 0.43 | 2.52 |
细渣 | 2.87 | 0.15 | 1.06 | 2.33 |
元素 | 水平振荡法 | 硫酸硝酸法 | 醋酸缓冲溶液法 | |||
---|---|---|---|---|---|---|
粗渣 | 细渣 | 粗渣 | 细渣 | 粗渣 | 细渣 | |
Al | 0.8822±0.0646 | 0.8530±0.2987 | 0.2258±0.1863 | 0.1482±0.1482 | 196.6901±2.9345 | 255.7820±5.3599 |
Ti | 2.3531±1.1747 | 3.2582±2.2412 | 3.5273±2.1923 | 0.9340±0.0294 | 7.5891±0.3097 | 6.2815±0.1529 |
V | 0.0206±0.0014 | 0.1346±0.0037 | 0.0270±0.0017 | 0.1712±0.0033 | 0.0054±0.0054 | 0.0722±0.0027 |
Cr | 0.0054±0.0051 | 0.0792±0.0773 | 0.0121±0.0064 | 0.0071±0.0071 | 0.0430±0.0089 | 0.0122±0.0122 |
Mn | 0.2067±0.0570 | 0.2238±0.2238 | 2.2628±1.4918 | 0.5842±0.4379 | 31.5834±0.4204 | 28.3886±0.4779 |
Fe | 0.1809±0.0782 | 13.0605±12.2423 | — | — | 2.7482±0.8046 | 2.0764±0.1658 |
Co | 0.0207±0.0031 | 0.0979±0.0770 | 0.0276±0.0028 | 0.0052±0.0033 | 3.0999±0.1013 | 2.4627±0.0427 |
Ni | 0.0894±0.0275 | 0.0667±0.0503 | 0.1802±0.0477 | 0.1279±0.0804 | 9.9477±0.4273 | 8.2514±0.9830 |
Cu | 0.0676±0.0676 | 0.0129±0.0031 | 0.0260±0.0189 | 0.0126±0.0126 | 0.4648±0.0914 | 0.8148±0.0531 |
Zn | 0.0927±0.0450 | 0.1117±0.0595 | 0.3843±0.1272 | 0.5286±0.5286 | 19.0067±1.7926 | 72.9737±2.2464 |
As | 0.0183±0.0023 | 0.2045±0.0038 | 0.0170±0.0037 | 0.1680±0.0066 | 0.0119±0.0023 | 0.0733±0.0105 |
Sr | 18.8408±0.2321 | 16.6620±0.1318 | 21.0711±0.3226 | 16.8904±0.4020 | 127.3107±1.3568 | 130.6020±2.2784 |
Cd | 0.0002±0.0002 | 0.0006±0.0002 | 0.0020±0.0003 | 0.0010±0.0008 | 0.0634±0.0237 | 0.3095±0.0106 |
Ba | 0.5049±0.0079 | 0.5804±0.0268 | 0.5209±0.0896 | 0.4413±0.0213 | 41.2657±2.1204 | 25.0240±1.7410 |
Pb | 0.0013±0.0005 | 0.0404±0.0322 | 0.0770±0.0770 | 0.0064±0.0064 | 0.0432±0.0117 | 0.2311±0.0644 |
表7 煤气化粗渣中主要金属离子浸出量 (µg/g)
元素 | 水平振荡法 | 硫酸硝酸法 | 醋酸缓冲溶液法 | |||
---|---|---|---|---|---|---|
粗渣 | 细渣 | 粗渣 | 细渣 | 粗渣 | 细渣 | |
Al | 0.8822±0.0646 | 0.8530±0.2987 | 0.2258±0.1863 | 0.1482±0.1482 | 196.6901±2.9345 | 255.7820±5.3599 |
Ti | 2.3531±1.1747 | 3.2582±2.2412 | 3.5273±2.1923 | 0.9340±0.0294 | 7.5891±0.3097 | 6.2815±0.1529 |
V | 0.0206±0.0014 | 0.1346±0.0037 | 0.0270±0.0017 | 0.1712±0.0033 | 0.0054±0.0054 | 0.0722±0.0027 |
Cr | 0.0054±0.0051 | 0.0792±0.0773 | 0.0121±0.0064 | 0.0071±0.0071 | 0.0430±0.0089 | 0.0122±0.0122 |
Mn | 0.2067±0.0570 | 0.2238±0.2238 | 2.2628±1.4918 | 0.5842±0.4379 | 31.5834±0.4204 | 28.3886±0.4779 |
Fe | 0.1809±0.0782 | 13.0605±12.2423 | — | — | 2.7482±0.8046 | 2.0764±0.1658 |
Co | 0.0207±0.0031 | 0.0979±0.0770 | 0.0276±0.0028 | 0.0052±0.0033 | 3.0999±0.1013 | 2.4627±0.0427 |
Ni | 0.0894±0.0275 | 0.0667±0.0503 | 0.1802±0.0477 | 0.1279±0.0804 | 9.9477±0.4273 | 8.2514±0.9830 |
Cu | 0.0676±0.0676 | 0.0129±0.0031 | 0.0260±0.0189 | 0.0126±0.0126 | 0.4648±0.0914 | 0.8148±0.0531 |
Zn | 0.0927±0.0450 | 0.1117±0.0595 | 0.3843±0.1272 | 0.5286±0.5286 | 19.0067±1.7926 | 72.9737±2.2464 |
As | 0.0183±0.0023 | 0.2045±0.0038 | 0.0170±0.0037 | 0.1680±0.0066 | 0.0119±0.0023 | 0.0733±0.0105 |
Sr | 18.8408±0.2321 | 16.6620±0.1318 | 21.0711±0.3226 | 16.8904±0.4020 | 127.3107±1.3568 | 130.6020±2.2784 |
Cd | 0.0002±0.0002 | 0.0006±0.0002 | 0.0020±0.0003 | 0.0010±0.0008 | 0.0634±0.0237 | 0.3095±0.0106 |
Ba | 0.5049±0.0079 | 0.5804±0.0268 | 0.5209±0.0896 | 0.4413±0.0213 | 41.2657±2.1204 | 25.0240±1.7410 |
Pb | 0.0013±0.0005 | 0.0404±0.0322 | 0.0770±0.0770 | 0.0064±0.0064 | 0.0432±0.0117 | 0.2311±0.0644 |
1 | 王辅臣, 于广锁, 龚欣, 等. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. |
WANG Fuchen, YU Guangsuo, GONG Xin, et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 173-180. | |
2 | 王辅臣. 煤气化技术在中国: 回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
WANG Fuchen. Coal gasification technologies in China: Review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
3 | 袁蝴蝶. 煤气化炉渣本征特征及应用基础研究[D]. 西安: 西安建筑科技大学, 2020. |
YUAN Hudie. Study on intrinsic characteristics and application basis of coal gasification slag[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. | |
4 | 范宁, 张逸群, 樊盼盼, 等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(8): 145-154. |
FAN Ning, ZHANG Yiqun, FAN Panpan, et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology, 2022, 28(8): 145-154. | |
5 | 李彦君, 阎蕊珍, 王建成, 等. 利用脱碳气化渣制备水泥基复合材料[J]. 洁净煤技术, 2022, 28(2): 160-168. |
LI Yanjun, YAN Ruizhen, WANG Jiancheng, et al. Preparation of cement-based composite materials by using decarbonized coal gasification slag[J]. Clean Coal Technology, 2022, 28(2): 160-168. | |
6 | LI Zuzhong, ZHANG Yayun, ZHAO Hongyan, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274. |
7 | ZHU Dandan, XUE Bing, JIANG Yinshan, et al. Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer[J]. Environmental Science and Pollution Research, 2019, 26(6): 5925-5933. |
8 | 胡文豪, 张建波, 李少鹏, 等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术, 2019, 25(1): 154-159. |
HU Wenhao, ZHANG Jianbo, LI Shaopeng, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1): 154-159. | |
9 | 姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 长春: 吉林大学, 2018. |
YAO Yangyang. Preparation and performance of activated carbon/zeolite composite adsorptive materials from coal gasification coarse slag[D]. Changchun: Jilin University, 2018. | |
10 | FAN Guixia, ZHANG Mengyun, PENG Weijun, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. Journal of Cleaner Production, 2021, 286: 124943. |
11 | SHI Zhaochen, SHU Yixiang, WANG Zongyi, et al. Emission characteristics of coal gasification fine slag direct combustion and co-firing with coal[J]. Journal of Environmental Management, 2023, 344: 118498. |
12 | Bo LYU, DENG Xiaowei, JIAO Feishuo, et al. Enrichment and utilization of residual carbon from coal gasification slag: A review[J]. Process Safety and Environmental Protection, 2023, 171: 859-873. |
13 | MIAO Zekai, GUO Zhenkun, QIU Guofeng, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50: 101585. |
14 | AI Weidong, LI Yongtao, ZHANG Xuejian, et al. The preparation and evaluation mechanism of mesoporous spherical silica/porous carbon-filled polypropylene composites obtained from coal gasification fine slag[J]. Environmental Science and Pollution Research, 2022, 29(59): 88894-88907. |
15 | WU Yuhua, MA Yulong, SUN Yonggang, et al. Effects of acid ionization on the formation mechanism of bimodal mesoporous Al-MCM-41s from coal gasification fine residue and evaluation of adsorption capabilities[J]. Journal of Hazardous Materials, 2021, 417: 126052. |
16 | WU Yuhua, XUE Kai, MA Qiaoling, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312: 110742. |
17 | ZHU Dandan, ZUO Jing, JIANG Yinshan, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102. |
18 | 李俏, 董阳, Jinder Jow, 等. 煤气化渣的基本性能及其应用途径分析[J]. 新型建筑材料, 2023, 50(3): 33-36, 41. |
LI Qiao, DONG Yang, JINDER Jow, et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials, 2023, 50(3): 33-36, 41. | |
19 | 尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(4): 30-33. |
YIN Hongfeng, TANG Yun, REN Yun, et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion, 2009, 32(4): 30-33. | |
20 | 吴阳, 赵世永, 李博. 宁东煤气流床气化残渣特性研究[J]. 煤炭工程, 2017, 49(3): 115-118. |
WU Yang, ZHAO Shiyong, LI Bo. Study on the residue features of Ningdong coal in entrained flow gasifiers[J]. Coal Engineering, 2017, 49(3): 115-118. | |
21 | TANG Yuegang, GUO Xin, XIE Qiang, et al. Petrological characteristics and trace element partitioning of gasification residues from slagging entrained-flow gasifiers in ningdong, China[J]. Energy & Fuels, 2018, 32(3): 3052-3067. |
22 | JI Wenxin, ZHANG Shiyue, ZHAO Pengde, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694. |
23 | JI Wenxin, FENG Ning, ZHAO Pengde, et al. Synthesis of single-phase zeolite A by coal gasification fine slag from Ningdong and its application as a high-efficiency adsorbent for Cu2+ and Pb2+ in simulated waste water[J]. ChemEngineering, 2020, 4(4): 65. |
24 | LIU Lijuan, JI Wenxin, LI Kangning, et al. Solid phase ZSM-5 synthesis from coal gasification coarse slag[J]. Silicon, 2022, 14(14): 8855-8868. |
25 | 赵鹏德, 吉文欣, 张世越, 等. 宁东煤气化细渣固相碱熔制备单一相A型沸石[J]. 石油学报(石油加工), 2020, 36(5): 1031-1038. |
ZHAO Pengde, JI Wenxin, ZHANG Shiyue, et al. Preparation of single phase zeolite A by solid phase alkali fusion synthesis of fine slag from Ningdong coal gasification[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1031-1038. | |
26 | 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法: [S]. 北京: 中国环境科学出版社, 2007. |
State Environmental Protection Administration of the People’s Republic of China. Solid waste—Extraction procedure for leaching toxicity—Sulphuric acid & nitric acid method: [S]. Beijing: China Environmental Science Press, 2007. | |
27 | 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: [S]. 北京: 中国环境科学出版社, 2007. |
State Environmental Protection Administration of the People’s Republic of China. Solid waste—Extraction procedure for leaching toxicity—Acetic acid buffer solution method: [S]. Beijing: China Environmental Science Press, 2007. | |
28 | 环境保护部. 固体废物浸出毒性浸出方法 水平振荡法: [S]. 北京: 中国环境科学出版社, 2010. |
Ministry of Environmental Protection of the People’s Republic of China. Solid waste-Extraction procedure for leaching toxicity—Horizontal vibration method: [S]. Beijing: China Environmental Science Press, 2010. | |
29 | LI Jie, YU Guangwei, XIE Shengyu, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Science of the Total Environment, 2018, 628/629: 131-140. |
30 | 张婷, 于露, 李宇, 等. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究, 2020(19): 88-90. |
ZHANG Ting, YU Lu, LI Yu, et al. Characteristic analysis and application discussion of coal water slurry gasifier slag[J]. Modern Chemical Research, 2020(19): 88-90. | |
31 | 王亚丰. 煤气化产物的矿物学和环境地球化学研究[D]. 北京: 中国矿业大学(北京), 2021. |
WANG Yafeng. Study on mineralogy and environmental geochemistry of coal gasification products[D]. Beijing: China University of Mining & Technology, 2021. | |
32 | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. |
QU Jiangshan, ZHANG Jianbo, SUN Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. | |
33 | 吾买尔江·卡瓦, 林雄超, 杨远平, 等. 新疆高碱煤四喷嘴气化炉结渣特性研究[J]. 洁净煤技术, 2019, 25(3): 62-67. |
KAWA Omarjiang, LIN Xiongchao, YANG Yuanping, et al. Study on the slagging characteristics of Xinjiang high-alkali coal in four-nozzle gasifier[J]. Clean Coal Technology, 2019, 25(3): 62-67. | |
34 | MIAO Zekai, CHEN Liqing, CHEN Kening, et al. Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification[J]. Advanced Powder Technology, 2020, 31(9): 3781-3789. |
35 | PAN Chanchan, LIANG Qinfeng, GUO Xiaolei, et al. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy & Fuels, 2016, 30(2): 1487-1495. |
36 | GUO Fanhui, ZHAO Xu, GUO Yang, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148. |
37 | DAI Gaofeng, ZHENG Shijie, WANG Xuebin, et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management, 2020, 271: 111009. |
38 | MIAO Zekai, XU Jie, CHEN Liqing, et al. Hierarchical porous composites derived from coal gasification fine slag for CO2 capture: Role of slag particles in the composites[J]. Fuel, 2022, 309: 122334. |
39 | SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
40 | FENG Dongdong, ZHANG Yu, ZHAO Yijun, et al. Evolution of char structure during in-situ biomass tar reforming: Importance of the coupling effect among the physical-chemical structure of char-based catalysts[J]. Catalysts, 2019, 9(9): 711. |
41 | GUO Yang, MA Chaofan, ZHANG Yixin, et al. Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions[J]. Fuel, 2022, 311: 122493. |
42 | LIU Yi, YAN Chunjie, ZHAO Junjie, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11-22. |
43 | SIVALINGAM Sivamani, Sujit SEN. Valorization of coal fly ash into nanozeolite by sonication-assisted hydrothermal method[J]. Journal of Environmental Management, 2019, 235: 145-151. |
44 | YANG Liyun, QIAN Xiaoming, YUAN Peng, et al. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3 [J]. Journal of Cleaner Production, 2019, 212: 250-260. |
45 | YANG Jinbiao, LIU Haiyan, DIAO Haiju, et al. A quasi-solid-phase approach to activate natural minerals for zeolite synthesis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3233-3242. |
46 | 张心潇. 气化细渣与煤混合燃烧动力学及灰渣中重金属析出特性研究[D]. 徐州: 中国矿业大学, 2021. |
ZHANG Xinxiao. Study on the kinetics of mixed combustion of gasified fine slag and coal and the emission characteristics of heavy metals in ash slag[D]. Xuzhou: China University of Mining and Technology, 2021. | |
47 | 李卫华. 固化/稳定化飞灰中重金属溶出行为及环境风险评估研究[D]. 青岛: 青岛理工大学, 2019. |
LI Weihua. Study on the leaching behavior and environmental risk assessment of heavy metals in solidified/stabilized municipal solid waste incineration fly ash[D]. Qingdao: Qingdao University of Technology, 2019. | |
48 | TONG Lizhi, HE Jinyong, WANG Feng, et al. Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash[J]. Chemosphere, 2020, 249: 126115. |
[1] | 张玉凤, 庞煜骞, 裴浩楠, 樊小青. 三种朝向链基有机骨架对天然气中C2~C3的分离[J]. 化工进展, 2024, 43(9): 5185-5192. |
[2] | 全翠, 高宁博, 张广涛, 索浩杰. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233. |
[3] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
[4] | 卞维柏, 张睿轩, 潘建明. 无机金属锂离子筛材料制备方法研究进展[J]. 化工进展, 2024, 43(8): 4173-4186. |
[5] | 何海霞, 万亚萌, 李帆帆, 牛心雨, 张静雯, 李涛, 任保增. 盐酸萘甲唑啉在甲醇-乙酸乙酯体系中的动力学及结晶工艺[J]. 化工进展, 2024, 43(8): 4230-4245. |
[6] | 向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332. |
[7] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[8] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[9] | 尹俊权, 吴寅凯, 李卫华, 孙英杰, 张闻轩, 张庆建, 马晓腾, 卞荣星, 王华伟. 垃圾焚烧典型工段灰/渣理化特性及环境风险性[J]. 化工进展, 2024, 43(8): 4714-4725. |
[10] | 李文哲, 申淼, 王建强. 熔盐法制备新型二维层状金属碳/氮化物(MXene)的研究进展[J]. 化工进展, 2024, 43(7): 3660-3671. |
[11] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
[12] | 孔祥蕊, 董玥岑, 张蒙雨, 王彪, 尹水娥, 陈冰, 陆家纬, 张媛, 冯乐乐, 王洪涛, 徐海云. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117. |
[13] | 李亚男, 郭凯, 王嘉琪, 武亚宁. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
[14] | 周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939. |
[15] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |