化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4230-4245.DOI: 10.16085/j.issn.1000-6613.2023-1210
• 化工过程与装备 • 上一篇
何海霞1(), 万亚萌1, 李帆帆1, 牛心雨1, 张静雯1, 李涛2, 任保增2()
收稿日期:
2023-07-16
修回日期:
2023-10-03
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
任保增
作者简介:
何海霞(1991—),女,博士,研究方向为相平衡与工业结晶。E-mail:xiaxia3502@163.com。
基金资助:
HE Haixia1(), WAN Yameng1, LI Fanfan1, NIU Xinyu1, ZHANG Jingwen1, LI Tao2, REN Baozeng2()
Received:
2023-07-16
Revised:
2023-10-03
Online:
2024-08-15
Published:
2024-09-02
Contact:
REN Baozeng
摘要:
盐酸萘甲唑啉(NPZ)是一种作用于循环系统的血管收缩类药物。针对原料药平均粒径偏小及粒度分布不均的问题,本文提出运用间歇动态法对NPZ在甲醇-乙酸乙酯体系中的结晶动力学进行研究,并系统考察了不同结晶工艺条件对晶体析出率、粒径以及变异系数的影响规律。结果表明:随着溶液过饱和度的增大,NPZ晶体成核机制由非均相成核转为均相成核,晶体表面生长符合连续生长模式;NPZ生长动力学模型、成核速率与生长速率方程分别为
中图分类号:
何海霞, 万亚萌, 李帆帆, 牛心雨, 张静雯, 李涛, 任保增. 盐酸萘甲唑啉在甲醇-乙酸乙酯体系中的动力学及结晶工艺[J]. 化工进展, 2024, 43(8): 4230-4245.
HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245.
甲醇质量分数 | 过饱和度 | 初级成核速率/N·m-3·s-1 | |||
---|---|---|---|---|---|
298.15K | 303.15K | 308.15K | 313.15K | ||
1.000 | 1.01 | 574.8 | 896.7 | 1716 | 1669 |
1.02 | 992.1 | 1156 | 2149 | 2215 | |
1.03 | 1096 | 1327 | 2421 | 2615 | |
1.04 | 1450 | 1634 | 2884 | 2887 | |
1.05 | 1945 | 1827 | 3466 | 3568 | |
1.06 | 2268 | 2231 | 3987 | 4556 | |
1.07 | 2594 | 2420 | 4513 | 5277 | |
1.08 | 2783 | 2561 | 5251 | 6034 | |
0.900 | 1.01 | 472.1 | 579.6 | 1038 | 1277 |
1.02 | 644.3 | 805.0 | 1420 | 1593 | |
1.03 | 764.6 | 970.8 | 1610 | 1813 | |
1.04 | 1035 | 1220 | 1789 | 2046 | |
1.05 | 1396 | 1545 | 2334 | 2622 | |
1.06 | 1583 | 1839 | 2840 | 3347 | |
1.07 | 1744 | 1899 | 3434 | 3991 | |
1.08 | 1889 | 1955 | 3907 | 4330 | |
0.800 | 1.01 | 270.7 | 393.3 | 480.7 | 1185 |
1.02 | 403.6 | 539.7 | 605.9 | 1399 | |
1.03 | 491.5 | 655.5 | 662.5 | 1552 | |
1.04 | 581.0 | 711.4 | 812.8 | 1573 | |
1.05 | 694.4 | 873.3 | 981.2 | 2388 | |
1.06 | 800.7 | 1113 | 1203 | 2764 | |
1.07 | 946.8 | 1363 | 1465 | 3293 | |
1.08 | 1036 | 1570 | 1810 | 3671 |
表1 初级成核速率计算结果
甲醇质量分数 | 过饱和度 | 初级成核速率/N·m-3·s-1 | |||
---|---|---|---|---|---|
298.15K | 303.15K | 308.15K | 313.15K | ||
1.000 | 1.01 | 574.8 | 896.7 | 1716 | 1669 |
1.02 | 992.1 | 1156 | 2149 | 2215 | |
1.03 | 1096 | 1327 | 2421 | 2615 | |
1.04 | 1450 | 1634 | 2884 | 2887 | |
1.05 | 1945 | 1827 | 3466 | 3568 | |
1.06 | 2268 | 2231 | 3987 | 4556 | |
1.07 | 2594 | 2420 | 4513 | 5277 | |
1.08 | 2783 | 2561 | 5251 | 6034 | |
0.900 | 1.01 | 472.1 | 579.6 | 1038 | 1277 |
1.02 | 644.3 | 805.0 | 1420 | 1593 | |
1.03 | 764.6 | 970.8 | 1610 | 1813 | |
1.04 | 1035 | 1220 | 1789 | 2046 | |
1.05 | 1396 | 1545 | 2334 | 2622 | |
1.06 | 1583 | 1839 | 2840 | 3347 | |
1.07 | 1744 | 1899 | 3434 | 3991 | |
1.08 | 1889 | 1955 | 3907 | 4330 | |
0.800 | 1.01 | 270.7 | 393.3 | 480.7 | 1185 |
1.02 | 403.6 | 539.7 | 605.9 | 1399 | |
1.03 | 491.5 | 655.5 | 662.5 | 1552 | |
1.04 | 581.0 | 711.4 | 812.8 | 1573 | |
1.05 | 694.4 | 873.3 | 981.2 | 2388 | |
1.06 | 800.7 | 1113 | 1203 | 2764 | |
1.07 | 946.8 | 1363 | 1465 | 3293 | |
1.08 | 1036 | 1570 | 1810 | 3671 |
温度/K | 甲醇质量分数 | 界面张力/×10-5J·m-2 | 表面熵因子 | 特征因子 | ||
---|---|---|---|---|---|---|
均相成核 | 非均相成核 | 均相成核 | 非均相成核 | |||
298.15 | 1.000 | 5.801 | 2.140 | 0.02534 | 9.350×10-3 | 0.05019 |
303.15 | 1.000 | 5.287 | 1.819 | 0.02272 | 7.810×10-3 | 0.04069 |
308.15 | 1.000 | 5.720 | 1.774 | 0.02418 | 7.500×10-3 | 0.02986 |
313.15 | 1.000 | 6.321 | 1.959 | 0.02630 | 8.150×10-3 | 0.02976 |
298.15 | 0.900 | 5.595 | 1.878 | 0.02445 | 8.210×10-3 | 0.03782 |
303.15 | 0.900 | 5.372 | 1.982 | 0.02309 | 8.520×10-3 | 0.05023 |
308.15 | 0.900 | 6.323 | 1.932 | 0.02673 | 8.170×10-3 | 0.02851 |
313.15 | 0.900 | 6.405 | 1.802 | 0.02664 | 7.490×10-3 | 0.02225 |
298.15 | 0.800 | 5.496 | 2.012 | 0.02401 | 8.790×10-3 | 0.04907 |
303.15 | 0.800 | 6.214 | 1.940 | 0.02670 | 8.340×10-3 | 0.03044 |
308.15 | 0.800 | 6.254 | 1.722 | 0.02644 | 7.280×10-3 | 0.02089 |
313.15 | 0.800 | 5.765 | 1.638 | 0.02398 | 6.810×10-3 | 0.02294 |
表2 NPZ在甲醇-乙酸乙酯体系中的界面张力与表面熵因子
温度/K | 甲醇质量分数 | 界面张力/×10-5J·m-2 | 表面熵因子 | 特征因子 | ||
---|---|---|---|---|---|---|
均相成核 | 非均相成核 | 均相成核 | 非均相成核 | |||
298.15 | 1.000 | 5.801 | 2.140 | 0.02534 | 9.350×10-3 | 0.05019 |
303.15 | 1.000 | 5.287 | 1.819 | 0.02272 | 7.810×10-3 | 0.04069 |
308.15 | 1.000 | 5.720 | 1.774 | 0.02418 | 7.500×10-3 | 0.02986 |
313.15 | 1.000 | 6.321 | 1.959 | 0.02630 | 8.150×10-3 | 0.02976 |
298.15 | 0.900 | 5.595 | 1.878 | 0.02445 | 8.210×10-3 | 0.03782 |
303.15 | 0.900 | 5.372 | 1.982 | 0.02309 | 8.520×10-3 | 0.05023 |
308.15 | 0.900 | 6.323 | 1.932 | 0.02673 | 8.170×10-3 | 0.02851 |
313.15 | 0.900 | 6.405 | 1.802 | 0.02664 | 7.490×10-3 | 0.02225 |
298.15 | 0.800 | 5.496 | 2.012 | 0.02401 | 8.790×10-3 | 0.04907 |
303.15 | 0.800 | 6.214 | 1.940 | 0.02670 | 8.340×10-3 | 0.03044 |
308.15 | 0.800 | 6.254 | 1.722 | 0.02644 | 7.280×10-3 | 0.02089 |
313.15 | 0.800 | 5.765 | 1.638 | 0.02398 | 6.810×10-3 | 0.02294 |
停留时间/min | 悬浮密度/kg·m-3 | 斜率 | 生长速率/μm·min-1 | 初始粒度密度对数值 | 初始粒度密度/1019μm-4 | 初始成核速率/×104L·min-1 |
---|---|---|---|---|---|---|
10 | 5.64 | -0.26692 | 0.37464 | 45.195 | 4.2483 | 15.916 |
15 | 6.46 | -0.26378 | 0.25274 | 44.281 | 1.7034 | 4.3051 |
20 | 6.98 | -0.63040 | 0.19009 | 43.867 | 1.1251 | 2.1387 |
25 | 7.64 | -0.23503 | 0.17019 | 43.961 | 1.2370 | 2.1053 |
30 | 8.06 | -0.23454 | 0.14212 | 44.145 | 1.4870 | 2.1134 |
35 | 8.38 | -0.23379 | 0.12221 | 43.702 | 9.5488 | 1.1669 |
40 | 8.84 | -0.23354 | 0.10705 | 43.818 | 1.0723 | 1.1449 |
45 | 9.38 | -0.22802 | 0.097460 | 43.302 | 0.64000 | 0.62372 |
表3 不同结晶时间下的晶桨悬浮密度、成核速率和生长速率
停留时间/min | 悬浮密度/kg·m-3 | 斜率 | 生长速率/μm·min-1 | 初始粒度密度对数值 | 初始粒度密度/1019μm-4 | 初始成核速率/×104L·min-1 |
---|---|---|---|---|---|---|
10 | 5.64 | -0.26692 | 0.37464 | 45.195 | 4.2483 | 15.916 |
15 | 6.46 | -0.26378 | 0.25274 | 44.281 | 1.7034 | 4.3051 |
20 | 6.98 | -0.63040 | 0.19009 | 43.867 | 1.1251 | 2.1387 |
25 | 7.64 | -0.23503 | 0.17019 | 43.961 | 1.2370 | 2.1053 |
30 | 8.06 | -0.23454 | 0.14212 | 44.145 | 1.4870 | 2.1134 |
35 | 8.38 | -0.23379 | 0.12221 | 43.702 | 9.5488 | 1.1669 |
40 | 8.84 | -0.23354 | 0.10705 | 43.818 | 1.0723 | 1.1449 |
45 | 9.38 | -0.22802 | 0.097460 | 43.302 | 0.64000 | 0.62372 |
13 | LI Xiang, YANG Ke, LI Bing, et al. Crystallization kinetics of Hf28Be18Ti17Zr17Cu7.5Ni12.5 high-entropy bulk metallic glass[J]. Thermochimica Acta, 2023, 724: 179497. |
14 | CAPUTO Maria Rosaria, OLMOS Asier, LI Bo, et al. Synthesis, morphology, and crystallization kinetics of polyheptalactone (PHL)[J]. Biomacromolecules, 2023, 24(7): 3256-3267. |
15 | WU Wenya, LEONG Fong Yew, TONG Shi Wun, et al. Time-resolved dynamic crystallization at liquid/vapor interface[J]. The Journal of Physical Chemistry C, 2022, 126(46): 19926-19933. |
16 | 范嘉昊, 张洋, 范兵强, 等. (NH4)2SO4和Na2SO4混合溶液中(NH4)2SO4结晶动力学及铁/铝/锰/铬等离子对(NH4)2SO4结晶的影响规律[J]. 化工进展, 2023, 42(1): 488-496. |
FAN Jiahao, ZHANG Yang, FAN Bingqiang, et al. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. | |
17 | TIERNEY Teresa B, RASMUSON Åke C, HUDSON Sarah P. Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization[J]. Organic Process Research & Development, 2017, 21(11): 1732-1740. |
18 | ZHOU Yanan, WANG Jingkang, WANG Ting, et al. Self-assembly of monodispersed carnosine spherical crystals in a reverse antisolvent crystallization process[J]. Crystal Growth & Design, 2019, 19(5): 2695-2705. |
19 | OSTERGAARD Iben, DE DIEGO Heidi Lopez, QU Haiyan, et al. Risk-based operation of a continuous mixed-suspension-mixed-product-removal antisolvent crystallization process for polymorphic control[J]. Organic Process Research & Development, 2020, 24(12): 2840-2852. |
20 | 万亚萌. 盐酸去氧肾上腺素溶析结晶过程研究[D]. 郑州: 郑州大学, 2021. |
WAN Yameng. Study on the crystallization process of phenylephrine hydrochloride dissolution[D]. Zhengzhou: Zhengzhou University, 2021. | |
21 | 陈建新. 氢化可的松结晶过程研究[D]. 天津: 天津大学, 2005. |
CHEN Jianxin. A study on crystallization process of hydrocortisone[D]. Tianjin: Tianjin University, 2005. | |
22 | 国家市场监督管理总局, 国家标准化管理委员会. 颗粒材料物理性能测试 第3部分:流动性指数的测量: [S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Granular materials-Physical properties: Part 3: Fluidity index: [S]. Beijing: Standards Press of China, 2019. | |
23 | 吴灏. 酰胺类药物晶体生长过程强化研究[D]. 天津: 天津大学, 2021. |
WU Hao. Study on strengthening the crystal growth process of amide drugs[D]. Tianjin: Tianjin University, 2021. | |
24 | 鲍颖. 盐酸大观霉素溶析结晶过程研究[D]. 天津: 天津大学, 2003. |
BAO Ying. Study on dissolution and crystallization process of spectinomycin hydrochloride[D]. Tianjin: Tianjin University, 2003. | |
25 | HEFFERNAN Claire, UKRAINCZYK Marko, ZEGLINSKI Jacek, et al. Influence of structurally related impurities on the crystal nucleation of curcumin[J]. Crystal Growth & Design, 2018, 18(8): 4715-4723. |
26 | DAVEY Roger J, SCHROEDER Sven L M, HORST Joop H TER. Nucleation of organic crystals-a molecular perspective[J]. Angewandte Chemie International Edition, 2013, 52(8): 2166-2179. |
27 | ZOU Fengxia, ZHUANG Wei, WU Jinglan, et al. Determination of metastable zone widths and the primary nucleation and growth mechanisms for the crystallization of disodium guanosine 5'-monophosphate from a water-ethanol system[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 137-145. |
28 | MAHADEVAN C, JEGATHEESAN C S. Nucleation studies in supersaturated aqueous solutions of chromate doped potassium dihydrogen phosphate[J]. Journal of the Indian Chemical Society, 1999, 76(1): 47-48. |
29 | 时钧. 化学工程手册[M]. 2版. 北京: 化学工业出版社, 1996. |
SHI Jun. Chemical engineering handbook[M]. 2nd ed. Beijing: Chemical Industry Press, 1996. | |
1 | QUAN Lin, HE Hua. Treatment with olopatadine and naphazoline hydrochloride reduces allergic conjunctivitis in mice through alterations in inflammation, NGF and VEGF[J]. Molecular Medicine Reports, 2016, 13(4): 3319-3325. |
2 | 李苗, 童颖, 乔戈, 等. 盐酸萘甲唑啉滴鼻液质量评价[J]. 医药导报, 2021, 40(3): 369-373. |
LI Miao, TONG Ying, QIAO Ge, et al. Quality evaluation of naphazoline hydrochloride nasal drops[J]. Herald of Medicine, 2021, 40(3): 369-373. | |
3 | 卜晔, 杜建勇, 郑丽霞, 等. 盐酸萘甲唑啉的药物新用途: CN114652717A[P]. 2022-06-24. |
BU Ye, DU Jianyong, ZHENG Lixia, et al. New medicinal application of naphazoline hydrochloride: CN114652717A[P]. 2022-06-24. | |
4 | 李明乐, 李盼欣, 张志光, 等. 盐酸萘甲唑啉的合成工艺研究[J]. 河北科技大学学报, 2021, 42(3): 265-270. |
LI Mingle, LI Panxin, ZHANG Zhiguang, et al. Study on the synthesis process of naphazoline hydrochloride[J]. Journal of Hebei University of Science and Technology, 2021, 42(3): 265-270. | |
5 | PODDER A, MUKHOPADHYAY B P, DATTAGUPTA J K, et al. 2-(1-Naphthylmethyl)-2-imidazoline hydrochloride (naphazoline hydrochloride), C14H15N2+.Cl-, an α-adrenergic agonist[J]. Acta Crystallographica Section C Crystal Structure Communications, 1983, 39(4): 495-497. |
6 | CRAVER B, CHASE H, YONKMAN F F. Pharmacologic studies of a new vasoconstrictor: 2-naphthyl-(1')-methyl-imidazoline hydrochloride (privine or naphthazoline) Ⅱ. vascular and respiratory reactions in the anesthetized dog[J]. The Journal of Pharmacology and Experimental Therapeutics, 1944, 82(3): 275-287. |
7 | 邢科, 燕禹辛, 刘学艳. 高效液相色谱法和电位滴定法测定盐酸萘甲唑啉原料药含量[J]. 山东化工, 2021, 50(7): 101-102, 105. |
XING Ke, YAN Yuxin, LIU Xueyan. Determination of naphazoline hydrochloride by HPLC and potentiometry titration[J]. Shandong Chemical Industry, 2021, 50(7): 101-102, 105. | |
8 | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
GONG Junbo, SUN Jie, WANG Jingkang. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
9 | Marko TRAMPUŽ, Dušan TESLIĆ, LIKOZAR Blaž. Crystallization of fesoterodine fumarate active pharmaceutical ingredient: Modelling of thermodynamic equilibrium, nucleation, growth, agglomeration and dissolution kinetics and temperature cycling[J]. Chemical Engineering Science, 2019, 201: 97-111. |
10 | 黄炎, 孙海龙, 孟子超, 等. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(5): 2380-2388. |
HUANG Yan, SUN Hailong, MENG Zichao, et al. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2380-2388. | |
11 | 张宇. 基于溶析法强化结晶的氨法捕碳过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHANG Yu. Study on carbon capture process by ammonia method based on enhanced crystallization by dissolution method[D]. Harbin: Harbin Institute of Technology, 2019. | |
12 | TRIFKOVIC M, SHEIKHZADEH M, ROHANI S. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer[J]. Industrial & Engineering Chemistry Research, 2008, 47(5): 1586-1595. |
30 | LI Yao, XIN Haoran, ZONG Yukai, et al. A novel nucleation-induced crystallization process towards simultaneous removal of hardness and organics[J]. Separation and Purification Technology, 2023, 307: 122785. |
31 | 陈葵. 红霉素结晶过程研究[D]. 上海: 华东理工大学, 2011. |
CHEN Kui. Study on the erythromycin crystallization processes[D]. Shanghai: East China University of Science and Technology, 2011. | |
32 | 丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985. |
DING Xuhuai, TAN Qiu. Industrial crystallization[M]. Beijing: Chemical Industry Press, 1985. |
[1] | 焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202. |
[2] | 顾颂琦, 孙凡飞, 韦尧, 宋兴飞, 南兵, 李丽娜, 黄宇营. 时间分辨热化学原位XAFS方法[J]. 化工进展, 2024, 43(7): 3747-3755. |
[3] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[4] | 丁路, 王培尧, 孔令学, 白进, 于广锁, 李文, 王辅臣. 煤气化过程反应模型研究进展[J]. 化工进展, 2024, 43(7): 3593-3612. |
[5] | 张昊, 陆小明. 纳米钛酸钡前体热分解反应动力学及颗粒演化机理[J]. 化工进展, 2024, 43(7): 3987-3995. |
[6] | 马栋, 解桂林, 田治华, 王勤辉, 张建国, 宋慧林, 钟晋. 流化床中煤气化细渣高温还原磷石膏过程[J]. 化工进展, 2024, 43(6): 3479-3491. |
[7] | 熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6): 2950-2960. |
[8] | 王东亮, 李婧玮, 孟文亮, 杨勇, 周怀荣, 范宗良. 二氧化碳加氢制甲醇过程碳氢利用率的影响因素与工艺优化分析[J]. 化工进展, 2024, 43(5): 2843-2850. |
[9] | 江安迪, 丁雪兴, 王世鹏, 丁俊华, 力宁. 超临界CO2干气密封热动力学性能研究进展[J]. 化工进展, 2024, 43(5): 2354-2369. |
[10] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
[11] | 石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511. |
[12] | 张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567. |
[13] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
[14] | 王德斌, 林梦雨, 杨雪, 董殿权. 锌掺杂型钛系铯离子筛的制备及其吸附性能[J]. 化工进展, 2024, 43(4): 1953-1961. |
[15] | 张鹏飞, 陈伟鹏, 肖卓楠, 吕青岗, 张顺风, 张子峰. 红砖掺杂改性白云鄂博铁精矿载氧体性能[J]. 化工进展, 2024, 43(4): 2226-2234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |