1 |
涂平涛. 木材与建筑[J]. 人造板通讯, 2003(9): 3-4, 9.
|
|
TU Pingtao. Wood and architecture[J]. China Wood-Based Panels, 2003(9): 3-4, 9.
|
2 |
WIMMERS G. Wood: a construction material for tall buildings[J]. Nature Reviews Materials, 2017, 2(12): 17051.
|
3 |
CHEN Chaoji, HU Liangbing. Nanocellulose toward advanced energy storage devices: structure and electrochemistry[J]. Accounts of Chemical Research, 2018, 51(12): 3154-3165.
|
4 |
CHEN Chaoji, KUANG Yudi, ZHU Shuze, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642-666.
|
5 |
吴宇晖, 张少迪, 任自忠, 等. 植酸-三聚氰胺处理木材阻燃性能研究[J]. 北京林业大学学报, 2020, 42(4): 155-161.
|
|
WU Yuhui, ZHANG Shaodi, REN Zizhong, et al. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, 42(4): 155-161.
|
6 |
GUAN Hao, CHENG Zhiyong, WANG Xiaoqing. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10365-10373.
|
7 |
GAN Wentao, CHEN Chaoji, GIROUX M, et al. Conductive wood for high-performance structural electromagnetic interference shielding[J]. Chemistry of Materials, 2020, 32(12): 5280-5289.
|
8 |
户桂涛, 范云场, 董兴, 等. 电化学传感器在食品分析中的应用进展[J]. 材料导报, 2015, 29(19): 40-45.
|
|
HU Guitao, FAN Yunchang, DONG Xing, et al. Progress in application of electrochemical sensors in food analysis[J]. Materials Review, 2015, 29(19): 40-45.
|
9 |
HARPER A, ANDERSON M R. Electrochemical glucose sensors-developments using electrostatic assembly and carbon nanotubes for biosensor construction[J]. Sensors (Basel), 2010, 10(9): 8248-8274.
|
10 |
刘建国, 安振涛, 张倩. 新型电化学传感器的研究进展[J]. 传感器与微系统, 2013, 32(7): 1-3, 7.
|
|
LIU Jianguo, AN Zhentao, ZHANG Qian. Research progress on novel electrochemical sensor [J]. Transducer and Microsystem Technologies, 2013, 32(7): 1-3, 7.
|
11 |
DONG Xiaoying, ZHUO Xiao, WEI Jie, et al. Wood-based nanocomposite derived by in-situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9070-9078.
|
12 |
NIE Kangchen, WANG Zhaosong, TANG Ruixin, et al. Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 43024-43031.
|
13 |
KONG Weiqing, WANG Chengwei, JIA Chao, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30(39): 1801934.
|
14 |
CHEN Chuchu, WANG Yiren, WU Qijing, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal, 2020, 400: 125876.
|
15 |
HUANG Yan, CHEN Yun, FAN Xiangyu, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing[J]. Small, 2018, 14: 1801520.
|
16 |
GUAN Hao, MENG Junwang, CHENG Zhiyong, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces. 2020, 12(41): 46357-46365.
|
17 |
FU Qiliang, CHEN Yi, Sorieul M. Wood-based flexible electronics[J]. ACS Nano, 2020, 14(3): 3528-3538.
|
18 |
GONZALEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206.
|
19 |
PENG Huisheng. Fiber-shaped energy harvesting and storage devices[M]. Berlin: Springer Berlin Heidelberg, 2015.
|
20 |
LU Leilei, LU Yuyang, XIAO Zijian, et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Advanced Materials, 2018, 30(20): 1706545.
|
21 |
ZHANG Sen, WU Chenling, WU Wei, et al. High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps[J]. Journal of Power Sources, 2019, 424: 1-7.
|
22 |
MA Yu, YAO Dongxu, LIANG Hanqin, et al. Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes[J]. Electrochimica Acta, 2020, 352: 136452.
|
23 |
LIU Mingquan, XU Min, XUE Yifei, et al. Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31260-31270.
|
24 |
MENG Qi, GE Huilin, YAO Weitang, et al. One-step synthesis of nitrogen-doped wood derived carbons as advanced electrodes for supercapacitor applications[J]. New Journal of Chemistry, 2019, 43(9): 3649-3652.
|
25 |
CHEN Chaoji, ZHANG Ying, LI Yiju, et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance[J]. Energy & Environmental Science, 2017, 10(2): 538-545.
|
26 |
CUI Mengxia, WANG Fang, ZHANG Zhengguo, et al. Polyaniline-filled carbonized wood membrane as an advanced self-supported electrode for superior pseudocapacitive energy storage[J]. Electrochimica Acta, 2020, 359: 136961.
|
27 |
XIN Fuen, JIA Yufeng, SUN Jie, et al. Enhancing the capacitive performance of carbonized wood by growing FeOOH nanosheets and PEDOT coating[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32192-32200.
|
28 |
WU Chenling, ZHANG Sen, WU Wei, et al. Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors[J]. Carbon, 2019, 150: 311-318.
|
29 |
李腾飞, 黄璐君, 闫旭东, 等. 碳化钛/椴木多孔碳复合材料用于超级电容器性能的研究(英文)[J]. 无机材料学报, 2020, 35(1): 126-130.
|
|
LI Tengfei, HUANG Lujun, YAN Xudong, et al. Ti3C2Tx/wood carbon as high-areal-capacity electrodes for supercapacitors (English)[J]. Journal of Inorganic Materials, 2020, 35(1): 126-130.
|
30 |
WU Wei, WANG Xin, DENG Yuanyuan, et al. In situ synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors[J]. Nanoscale, 2020, 12(34): 17738-17745.
|
31 |
ROY P, SRIVASTAVA S K. Nanostructured anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(6):2454-2484.
|
32 |
孙仲振, 赵云. 锂离子电池组应用中存在的问题[J]. 化工设计通讯, 2021, 47(1): 82-85.
|
|
SUN Zhongzhen, ZHAO Yun. The problems existing in the application of lithium-ion batteries pack[J]. Chemical Engineering Design Communications, 2021, 47(1): 82-85.
|
33 |
FENG Ningning, WANG Bingliang, YU Zhuo, et al. Mechanism-of-action elucidation of reversible Li-CO2 batteries using the water-in-salt electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7396-7404.
|
34 |
WOO H S, SON H B, MIN Jiyun, et al. Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries[J]. Electrochimica Acta, 2020, 345: 136248.
|
35 |
郑凌云, 吴双双, 王傲楠, 等. Li-CO2电池电化学机理研究进展[J]. 山东化工, 2019, 48(19): 60-61, 64.
|
|
ZHENG Lingyun, WU Shuangshuang, WANG Aonan, et al. Recent advances in electrochemical mechanism of Li-CO2 batteries[J]. Shandong Chemical Industry, 2019, 48(19): 60-61, 64.
|
36 |
SHI Baohui, SHANG Yuanyuan, PEI Yong, et al. Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework[J]. Nano Lett., 2020, 20(7): 5504-5512.
|
37 |
WANG Jun, YAO Hongyan, DU Chunya, et al. Polyimide schiff base as a high-performance anode material for lithium-ion batteries[J]. Journal of Power Sources, 2021, 482: 228931.
|
38 |
SONG Huiyu, CHEN Xilong, ZHENG Guangli, et al. Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18361-18367.
|
39 |
SONG Huiyu, XU Shaomao, LI Yiju, et al. Hierarchically porous, ultrathick, “breathable”wood-derived cathode for lithium-oxygen batteries[J]. Advanced Energy Materials, 2018, 8(4): 1701203.
|
40 |
XU Shaomao, CHEN Chaiji, KUANG Yudi, et al. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling[J]. Energy & Environmental Science, 2018, 11(11): 3231-3237.
|
41 |
CHEN Minfeng, ZHOU Weijun, CHEN Jizhang, et al. Rendering wood veneers flexible and electrically conductive through delignification and electroless Ni plating[J]. Materials (Basel), 2019, 12(19): 3198.
|
42 |
郭晋芝, 万放, 吴兴隆, 等. 钠离子电池工作原理及关键电极材料研究进展[J]. 分子科学学报, 2016, 32(4): 265-279.
|
|
GUO Jinzhi, WAN Fang, WU Xinglong, et al. Sodium-ion batteries: work mechanism and the research progress of key electrode materials [J]. Journal of Molecular Science, 2016, 32(4): 265-279.
|
43 |
HAN Longfei, WANG Junling, MU Xiaowei, et al. Anisotropic, low-tortuosity and ultra-thick red P@C-wood electrodes for sodium-ion batteries[J]. Nanoscale, 2020, 12(27): 14642-14650.
|
44 |
JIA Chao, LI Tian, CHEN Chaoji, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy, 2017, 36: 366-373.
|
45 |
LI Yuanyuan, CHENG Ming, JUNGSTEDT E, et al. Optically transparent wood substrate for perovskite solar cells[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6061-6067.
|