化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 211-218.DOI: 10.16085/j.issn.1000-6613.2021-1329
高士超(), 王树刚(), 胡沛裕, 王继红, 张腾飞, 辛全昊
收稿日期:
2021-06-24
修回日期:
2021-07-09
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
王树刚
作者简介:
高士超(1998—),男,硕士研究生,研究方向为建筑节能与蓄热。E-mail:基金资助:
GAO Shichao(), WANG Shugang(), HU Peiyu, WANG Jihong, ZHANG Tengfei, XIN Quanhao
Received:
2021-06-24
Revised:
2021-07-09
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Shugang
摘要:
可再生能源的利用不仅可降低环境污染,还有助于实现“碳中和”目标,蓄热技术是有效利用太阳能等不稳定可再生能源的重要途经之一。热化学蓄热材料由于储能密度高、热损失小等优点可实现低品位热能的跨季节应用。本文对现有文献内吸附蓄热材料的蓄热性能进行总结分析,对比四类蓄热材料在不同运行工况下的储能密度、输出功率与蓄热效率等蓄热性能,并论述各类材料的典型应用案例。文中指出:溶液吸收材料脱附温度较低,但系统传热传质性能较差,实际应用中无法满足建筑供暖需求;固体吸附材料循环稳定性好,可采用太阳能集热器作为热源使其再生,它是目前建筑供暖中具有较大潜力的蓄热材料;纯热化学反应材料储能密度最高,然而其循环稳定性差,仍处于实验室研究阶段;兼有固体吸附材料与无机盐优点的复合材料有望成为建筑内理想的蓄热材料。最后文章针对各类材料提出其未来的研究方向。
中图分类号:
高士超, 王树刚, 胡沛裕, 王继红, 张腾飞, 辛全昊. 吸附蓄热材料性能研究进展[J]. 化工进展, 2021, 40(S2): 211-218.
GAO Shichao, WANG Shugang, HU Peiyu, WANG Jihong, ZHANG Tengfei, XIN Quanhao. The state of the art on performance of sorption heat storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 211-218.
1 | MA Z W, BAO H S, ROSKILLY A P. Electricity-assisted thermochemical sorption system for seasonal solar energy storage[J]. Energy Conversion and Management, 2020, 209: 112659. |
2 | SCHMIDT M, GUTIERREZ A, LINDER M. Thermochemical energy storage with CaO/Ca(OH)2-experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188: 672-681. |
3 | GEILFUß K, DAWOUD B. Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process[J]. Energy, 2020, 195: 116977. |
4 | MARIAS F, NEVEU P, TANGUY G, et al. Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode[J]. Energy, 2014, 66: 757-765. |
5 | 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616. |
LI Lin, HUANG Hongyu, DENG Lisheng, et al. Research progress of low-grade energy chemical heat storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616. | |
6 | SCAPINO L, ZONDAG H A, BAEL J VAN, et al. Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. |
7 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
8 | LEFEBVRE D, TEZEL F H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 116-125. |
9 | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
WANG Xiang, CHEN Haisheng, XU Yujie, et al. Advances and prospects in thermal energy storage: a critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
10 | 赵璇, 赵彦杰, 王景刚, 等. 太阳能跨季节储热技术研究进展[J]. 新能源进展, 2017, 5(1): 73-80. |
ZHAO Xuan, ZHAO Yanjie, WANG Jinggang, et al. Research progress on solar seasonal thermal energy storage[J]. Advances in New and Renewable Energy, 2017, 5(1): 73-80. | |
11 | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
12 | TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. |
13 | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
14 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
WU Juan, LONG Xinfeng. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
15 | KRESE G, KOŽELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy and Buildings, 2018, 164: 239-253. |
16 | 郝茂森, 刘洪芝, 王婉桐, 等. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 2020, 9(3): 791-796. |
HAO Maosen, LIU Hongzhi, WANG Wantong, et al. Research progress of thermochemical heat storage materials of hydrated salts[J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. | |
17 | GUR I, SAWYER K, PRASHER R. Searching for a better thermal battery[J]. Science, 2012, 335(6075): 1454-1455. |
18 | JARIMI H, AYDIN D, YANAN Z, et al. Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery[J]. International Journal of Low-Carbon Technologies, 2019, 14(1): 44-69. |
19 | FUMEY B, WEBER R, BALDINI L. Sorption based long-term thermal energy storage-process classification and analysis of performance limitations: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 57-74. |
20 | KUZNIK F, JOHANNES K, OBRECHT C. Chemisorption heat storage in buildings: state-of-the-art and outlook[J]. Energy and Buildings, 2015, 106: 183-191. |
21 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. |
22 | SHEN Y L, LIU S L, MAZHAR A R, et al. A review of solar-driven short-term low temperature heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110824. |
23 | 孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584. |
SUN Feng, PENG Hao, LING Xiang. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584. | |
24 | LI M Y, LI B G, LIU C Y, et al. Design and experimental investigation of a phase change energy storage air-type solar heat pump heating system[J]. Applied Thermal Engineering, 2020, 179: 115506. |
25 | MAHON D, HENSHALL P, CLAUDIO G, et al. Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage[J]. Renewable Energy, 2020, 145: 1799-1807. |
26 | N’TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396. |
27 | 章燕豪. 吸附作用[M]. 上海: 上海科学技术文献出版社, 1989: 46-51. |
ZHANG Yanhao. Adsorption[M]. Shanghai: Shanghai Scientific and Technological Literature Press, 1989: 46-51. | |
28 | GORDEEVA L G, GREKOVA A D, KRIEGER T A, et al. Adsorption properties of composite materials (LiCl+LiBr)/silica[J]. Microporous and Mesoporous Materials, 2009, 126(3): 262-267. |
29 | ZHU D S, WU H J, WANG S W. Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage[J]. International Journal of Thermal Sciences, 2006, 45(8): 804-813. |
30 | N’TSOUKPOE K E, LE PIERRÈS N, LUO L G. Experimentation of a LiBr-H2O absorption process for long term solar thermal storage[J]. Energy Procedia, 2012, 30: 331-341. |
31 | N’TSOUKPOE K E, PERIER-MUZET M, LE PIERRÈS N, et al. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104: 2-15. |
32 | N’TSOUKPOE K E, LE PIERRÈS N, LUO L. Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage: prototype design and first results[J]. Energy, 2013, 53: 179-198. |
33 | ZHANG X L, LI M Z, SHI W X, et al. Experimental investigation on charging and discharging performance of absorption thermal energy storage system[J]. Energy Conversion and Management, 2014, 85: 425-434. |
34 | DING Z X, WU W. A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature[J]. Applied Energy, 2021, 282: 116068. |
35 | HUI L, EDEM N K, NOLWENN L P, et al. Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436. |
36 | IBRAHIM N I, AL-SULAIMAN F A, ANI F N. Performance characteristics of a solar driven lithium bromide-water absorption chiller integrated with absorption energy storage[J]. Energy Conversion and Management, 2017, 150: 188-200. |
37 | CHU P, WANG H B, CHEN J F, et al. Experiment investigation on a LiBr-H2O concentration difference cold storage system driven by vapor compression heat pump[J]. Solar Energy, 2021, 214: 294-309. |
38 | GAO J T, XU Z Y, WANG R Z. Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density[J]. Applied Energy, 2020, 262: 114476. |
39 | EL-SHAARAWI M A I, AL-UGLA A A. Unsteady analysis for solar-powered hybrid storage LiBr-water absorption air-conditioning[J]. Solar Energy, 2017, 144: 556-568. |
40 | N’TSOUKPOE K E. Etude du stockage à long terme de l’énergie solaire thermique par procédé d’absorption LiBr-H2O pour le chauffage de l’habitat[D]. Grenoble, France: Universit´e de Grenoble, 2012. |
41 | WEBER R, DORER V. Long-term heat storage with NaOH[J]. Vacuum, 2008, 82(7): 708-716. |
42 | FUMEY B, WEBER R, GANTENBEIN P, et al. Experience on the development of a thermo-chemical storage system based on aqueous sodium hydroxide[J]. Energy Procedia, 2014, 57: 2370-2379. |
43 | FUMEY B, WEBER R, BALDINI L. Liquid sorption heat storage-a proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design[J]. Applied Energy, 2017, 200: 215-225. |
44 | GALINDO-LUNA Y R, GÓMEZ-ARIAS E, ROMERO R J, et al. Hybrid solar-geothermal energy absorption air-conditioning system operating with NaOH-H2O-las tres vírgenes (Baja California sur), “La reforma” case[J]. Energies, 2018, 11(5): 1268. |
45 | DAGUENET-FRICK X, GANTENBEIN P, MÜLLER J, et al. Seasonal thermochemical energy storage: comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit[J]. Renewable Energy, 2017, 110: 162-173. |
46 | FUMEY B, WEBER R, BALDINI L. Cycling test of liquid sorption thermal energy storage using sodium hydroxide[C]//ROMERO M, MUGNIER D, RENNE D, et al. Proceedings of the ISES solar world conference 2017 and the IEA SHC solar heating and cooling conference for buildings and industry 2017. Abu Dhabi, United Arab Emirates: International Solar Energy Society: 2017, 735-741. |
47 | N'TSOUKPOE K E, KUZNIK F. A reality check on long-term thermochemical heat storage for household applications[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110683. |
48 | FUMEY B, WEBER R, GANTENBEIN P, et al. Closed sorption heat storage based on aqueous sodium hydroxide[J]. Energy Procedia, 2014, 48: 337-346. |
49 | FUMEY B, WEBER R, GANTENBEIN P, et al. Operation results of a closed sorption heat storage prototype[J]. Energy Procedia, 2015, 73: 324-330. |
50 | 杰罗尼克M, 迈狄 R. 非均匀固体上的物理吸附[M]. 加璐, 程代云, 王广昌, 译. 北京: 化学工业出版社, 1997: 1-9. |
JARONIEC M, MADEY R. Physical adsorption on heterogeneous solids[M]. Transilated by JIA Lu, CHENG Daiyun, WANG Guangchang,et al. Beijing: Chemical Industry Press, 1997: 1-9. | |
51 | DESHMUKH H, MAIYA M P, SRINIVASA MURTHY S. Study of sorption based energy storage system with silica gel for heating application[J]. Applied Thermal Engineering, 2017, 111: 1640-1646. |
52 | HELALY H O, AWAD M M, EL-SHARKAWY I I, et al. Theoretical and experimental investigation of the performance of adsorption heat storage system[J]. Applied Thermal Engineering, 2019, 147: 10-28. |
53 | HENNINGER S K, HABIB H A, JANIAK C. MOFs as adsorbents for low temperature heating and cooling applications[J]. Journal of the American Chemical Society, 2009, 131(8): 2776-2777. |
54 | SHI W N, ZHU Y Q, SHEN C, et al. Water sorption properties of functionalized MIL-101(Cr)-X (X=―NH2, ―SO3H, ―H, ―CH3, ―F) based composites as thermochemical heat storage materials[J]. Microporous and Mesoporous Materials, 2019, 285: 129-136. |
55 | KUZNIK F, GONDRE D, JOHANNES K, et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings[J]. Renewable Energy, 2019, 132: 761-772. |
56 | JOHANNES K, KUZNIK F, HUBERT J L, et al. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings[J]. Applied Energy, 2015, 159: 80-86. |
57 | ALEBEEK R VAN, SCAPINO L, BEVING M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333. |
58 | GAEINI M, JAVED M R, OUWERKERK H, et al. Realization of a 4kW thermochemical segmented reactor in household scale for seasonal heat storage[J]. Energy Procedia, 2017, 135: 105-114. |
59 | HAUER A. Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems[J]. Adsorption, 2007, 13(3/4): 399-405. |
60 | KRÖNAUER A, LÄVEMANN E, BRÜCKNER S, et al. Mobile sorption heat storage in industrial waste heat recovery[J]. Energy Procedia, 2015, 73: 272-280. |
61 | CABEZA L F, SOLÉ A, BARRENECHE C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39. |
62 | BALES C, GANTENBEIN P, JAENIG D, et al. A report of IEA solar heating and cooling programme-task 32: advanced storage concepts for solar and low energy buildings[R]. Paris, French: International Energy Agency, 2008. |
63 | KUZNIK F, GONDRE D, JOHANNES K, et al. Sensitivity analysis of a zeolite energy storage model: impact of parameters on heat storage density and discharge power density[J]. Renewable Energy, 2020, 149: 468-478. |
64 | HAUER A. Thermal energy storage with zeolite for heating and cooling applications[C]//WANG R, WANG W, LU Z, et al. Proceedings of the International Sorption Heat Pump Conference. Shanghai, China: Science Press, 2002, 385-390. |
65 | HAUER A, FISCHER F. Open adsorption system for an energy efficient dishwasher[J]. Chemie Ingenieur Technik, 2011, 83(1/2): 61-66. |
66 | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124. |
YAN Ting, WANG Wenhuan, WANG Ruzhu. Present status and progress of research on chemical adsorption heat storage[J]. Materials Review, 2018, 32(23): 4107-4115, 4124. | |
67 | MAMANI V, GUTIÉRREZ A, USHAK S. Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176: 346-356. |
68 | XU C, XIE Y Y, LIAO Z R, et al. Numerical study on the desorption process of a thermochemical reactor filled with MgCl2·6H2O for seasonal heat storage[J]. Applied Thermal Engineering, 2019, 146: 785-794. |
69 | LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48: 394-404. |
70 | BERTSCH F, METTE B, ASENBECK S, et al. Low temperature chemical heat storage-an investigation of hydration reactions[C]//CHIU N W, MARTIN V, SETTERWALL F. The 11th International Conference on Energy Storage for Efficiency and Sustainability. Stockholm, Sweden: Royal Institute of Technology, 2009, 1-8. |
71 | LIN J Q, ZHAO Q, HUANG H T, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: a review[J]. Solar Energy, 2021, 214: 149-178. |
72 | MUKHERJEE A, MAJUMDAR R, SAHA S K, et al. Assessment of open thermochemical energy storage system performance for low temperature heating applications[J]. Applied Thermal Engineering, 2019, 156: 453-470. |
73 | LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. |
74 | STENGLER J, BÜRGER I, LINDER M. Thermodynamic and kinetic investigations of the SrBr2 hydration and dehydration reactions for thermochemical energy storage and heat transformation[J]. Applied Energy, 2020, 277: 115432. |
75 | MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance[J]. Applied Energy, 2014, 129: 177-186. |
76 | FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009. |
77 | MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47(1): 553-563. |
78 | FOPAH-LELE A, TAMBA J G. A review on the use of SrBr2·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 175-187. |
79 | ABEDIN A H, ROSEN M A. Closed and open thermochemical energy storage: energy- and exergy-based comparisons[J]. Energy, 2012, 41(1): 83-92. |
80 | FOPAH-LELE A, ROHDE C, NEUMANN K, et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J]. Energy, 2016, 114: 225-238. |
81 | N’TSOUKPOE K E, MAZET N, NEVEU P. The concept of cascade thermochemical storage based on multimaterial system for household applications[J]. Energy and Buildings, 2016, 129: 138-149. |
82 | BELZ K, KUZNIK F, WERNER K F, et al. Advances in thermal energy storage systems[M]. Amsterdam: Elsevier, 2015: 441-465. |
83 | CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145. |
84 | GODEFROY A, PERIER-MUZET M, NEVEU P, et al. Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power[J]. Energy Conversion and Management, 2020, 225: 113347. |
85 | COURBON E, D’ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
86 | PONOMARENKO I V, GLAZNEV I S, GUBAR A V, et al. Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 243-250. |
87 | GLAZNEV I, PONOMARENKO I, KIRIK S, et al. Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat: pore size effect[J]. International Journal of Refrigeration, 2011, 34(5): 1244-1250. |
88 | RESTUCCIA G, FRENI A, VASTA S, et al. Selective water sorbent for solid sorption chiller: experimental results and modelling[J]. International Journal of Refrigeration, 2004, 27(3): 284-293. |
89 | WU H J, WANG S W, ZHU D S. Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage[J]. Solar Energy, 2007, 81(7): 864-871. |
90 | FRENI A, RUSSO F, VASTA S, et al. An advanced solid sorption chiller using SWS-1L[J]. Applied Thermal Engineering, 2007, 27(13): 2200-2204. |
91 | WU H J, WANG S W, ZHU D S, et al. Numerical analysis and evaluation of an open-type thermal storage system using composite sorbents[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5262-5265. |
92 | YAN T, WANG R Z, LI T X. Experimental investigation on thermochemical heat storage using manganese chloride/ammonia[J]. Energy, 2018, 143: 562-574. |
93 | XU C, YU Z B, XIE Y Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259. |
94 | XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. |
95 | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
ZHANG Yannan, WANG Ruzhu, LI Tingxian. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent[J]. CIESC Journal, 2018, 69(1): 363-370. | |
96 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. |
97 | STITOU D, MAZET N, MAURAN S. Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J]. Energy, 2012, 41(1): 261-270. |
98 | CRANSTON J, ASKALANY A, SANTORI G. Efficient drying in washer dryers by combining sorption and heat pumping[J]. Energy, 2019, 183: 683-692. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[12] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[15] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |