化工进展 ›› 2022, Vol. 41 ›› Issue (1): 391-399.DOI: 10.16085/j.issn.1000-6613.2021-0207
张莉红1,2,3(), 李杰1,3, 王亚娥1(), 谢慧娜1, 赵炜1, 李婧1
收稿日期:
2021-01-28
修回日期:
2021-05-20
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
王亚娥
作者简介:
张莉红(1988—),女,博士研究生,研究方向为污水处理。E-mail:基金资助:
ZHANG Lihong1,2,3(), LI Jie1,3, WANG Ya’e1(), XIE Huina1, ZHAO Wei1, LI Jing1
Received:
2021-01-28
Revised:
2021-05-20
Online:
2022-01-05
Published:
2022-01-24
Contact:
WANG Ya’e
摘要:
厌氧氨氧化耦合Fe(Ⅲ)还原,即铁氨氧化(Feammox)技术,是近年来新发现的一种以廉价、易得的铁作为微生物电子供体的新型自养生物脱氮技术。该技术具有无需有机碳源、成本低、污泥产量低、不产生温室气体等显著优点,是自然系统和污水处理系统等领域潜在的脱氮途径。本文聚焦于Feammox的产生和发展,详细介绍了该技术的作用机制及其参与反应的主要微生物特征,认为Feammox过程中起主要作用的微生物是一类能驱动氨氧化的铁还原菌;简要分析了pH、温度、溶解氧、有机物及铁源等影响因素;探讨了与FeNiR、Anammox和反硝化等氮损失途径的关系。最后,提出了Feammox仍面临的挑战,展望了未来发展趋势,指出菌的快速富集和分离纯化、控制参数以及与其他脱氮途径之间的相互作用是Feammox未来的研究方向。
中图分类号:
张莉红, 李杰, 王亚娥, 谢慧娜, 赵炜, 李婧. Feammox: 一种新型自养生物脱氮技术[J]. 化工进展, 2022, 41(1): 391-399.
ZHANG Lihong, LI Jie, WANG Ya’e, XIE Huina, ZHAO Wei, LI Jing. Feammox: a novel autotrophic nitrogen removal technology[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 391-399.
环境 | Feammox活性 | 氮损失以及贡献 | 主要微生物 | 文献 |
---|---|---|---|---|
厌氧废水处理反应器 | 氨氮去除率69.49% | 0.81%~2.2% | 地杆菌属 | [ |
厌氧消化反应器 | 11.3%~21.5% | [ | ||
太湖河口生态环境 | 0.07~0.15mg·kg-1·d-1 | 8.3~17.8kg·hm-2·a-1,3.5%~4.2% | 地杆菌属,厌氧黏细菌,假单胞菌 | [ |
长江口湿地 | 0.24~0.36mg·kg-1·d-1 | 8.3~17.8t·km-1·a-1,3.1%~4.9% | 地杆菌属,希瓦菌属 | [ |
水稻土 | 0.17~0.59mg·kg-1·d-1 | 7.8~61kg·hm-2·a-1,0.577%~6.89% | 地杆菌属 | [27,22] |
麦稻轮作区 | 0.031~0.42mg·kg-1·d-1 | 36.00% | 地杆菌属,厌氧黏细菌 | [ |
河岸带 | 0.32~0.37mg·kg-1·d-1 | 23.7~43.9kg·hm-2·a-1 | 厌氧黏细菌,假单胞菌,地杆菌属 | [ |
人工湿地 | 11.0%~25.0% | 酸微菌属A6 | [ | |
湖泊沉积物 | 0.23~0.43mg·kg-1·d-1,0.14~0.34mg·kg-1·d-1 | 5.0%~9.2% | 地杆菌属,希瓦菌属 | [ |
热带旱地土壤 | 0.32mg·kg-1·d-1 | [ |
表1 不同环境Feammox活性、氮素流失的贡献及优势群落
环境 | Feammox活性 | 氮损失以及贡献 | 主要微生物 | 文献 |
---|---|---|---|---|
厌氧废水处理反应器 | 氨氮去除率69.49% | 0.81%~2.2% | 地杆菌属 | [ |
厌氧消化反应器 | 11.3%~21.5% | [ | ||
太湖河口生态环境 | 0.07~0.15mg·kg-1·d-1 | 8.3~17.8kg·hm-2·a-1,3.5%~4.2% | 地杆菌属,厌氧黏细菌,假单胞菌 | [ |
长江口湿地 | 0.24~0.36mg·kg-1·d-1 | 8.3~17.8t·km-1·a-1,3.1%~4.9% | 地杆菌属,希瓦菌属 | [ |
水稻土 | 0.17~0.59mg·kg-1·d-1 | 7.8~61kg·hm-2·a-1,0.577%~6.89% | 地杆菌属 | [27,22] |
麦稻轮作区 | 0.031~0.42mg·kg-1·d-1 | 36.00% | 地杆菌属,厌氧黏细菌 | [ |
河岸带 | 0.32~0.37mg·kg-1·d-1 | 23.7~43.9kg·hm-2·a-1 | 厌氧黏细菌,假单胞菌,地杆菌属 | [ |
人工湿地 | 11.0%~25.0% | 酸微菌属A6 | [ | |
湖泊沉积物 | 0.23~0.43mg·kg-1·d-1,0.14~0.34mg·kg-1·d-1 | 5.0%~9.2% | 地杆菌属,希瓦菌属 | [ |
热带旱地土壤 | 0.32mg·kg-1·d-1 | [ |
9 | LOU H W, LEI X, CHEN Y C. Research progress in biological nitrogen removal[J]. Industrial Water Treatment, 2019, 39(5): 1-4. |
10 | MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via Anammox: recent advances[J]. Bioresource Technology, 2016, 200: 981-990. |
11 | NISHIMURA F, HIDAKA T, NAKAGAWA A, et al. Removal of high concentration ammonia from wastewater by a combination of partial nitrification and Anammox treatment[J]. Environmental Technology, 2012, 33(13/14/15): 1485-1489. |
12 | LI X, YAN Y, HUANG Y, et al. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631(1): 153-157. |
13 | 王新奇, 程爱华.生物海绵铁去除生活污水中氨氮的性能研究[J]. 科学技术与工程, 2014, 14(9): 284-287. |
WANG X Q, CHENG A H. Study on performance of biological sponge iron in nitrogen removal from domestic wastewater[J]. Science Technology and Engineering, 2014, 14(9): 284-287. | |
14 | 杨含, 郑丹, 邓良伟, 等.微生物驱动下铁氧化还原循环与生物脱氮[J]. 中国沼气, 2019(4): 77-86. |
YANG H, ZHENG D, DENG L W, et al. Iron recycle and biological nitrogen removal driven by microorganisms[J]. China Biogas, 2019 (4): 77-86. | |
15 | YANG Y F, XIAO C C, LU J H, et al. Fe(Ⅲ)/Fe(Ⅱ) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor[J]. Water Research, 2020, 172: 115528. |
16 | 吴德礼, 傅旻瑜, 马鲁铭. 生物及化学反硝化过程中N2O的产生与控制[J]. 化学进展, 2012, 24(10): 2054-2061. |
WU D L, FU M Y, MA L M. Nitrous oxide emission and control in biological and chemical denitrification[J]. Progress in Chemistry, 2012, 24 (10): 2054-2061. | |
17 | DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu Estuary region[J]. Science of the Total Environment, 2019, 662: 600-606. |
18 | LI X F, HOU L J, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568. |
1 | GALÍ A, DOSTA J, LOOSDRECHT M C M VAN, et al. Biological nitrogen removal via nitrite of reject water with a SBR and chemostat SHARON/denitrification process[J]. Industrial & Engineering Chemistry Research, 2006, 45(22): 7656-7660. |
2 | Ni B J, RUSCALLEDA M, PELLICERNACHER C, et al. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: a simple extension to the general ASM descriptive models[J]. JAIDS: Journal of Acquired Immune Deficiency Syndromes, 2011, 6(6): 706-706. |
19 | CLEMÉNT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328. |
20 | YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. |
21 | YAO Z B, WANG F, WANG C L, et al. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research International, 2019, 26(15): 15084-15094. |
22 | YI B, WANG H H, ZHANG Q C, et al. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China[J]. Science of the Total Environment, 2019, 652: 1139-1147. |
23 | 李祥, 林兴, 杨朋兵, 等. 活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探[J]. 环境科学, 2016, 37(8): 3114-3119. |
LI X, LIN X, YANG P B, et al. Simultaneous ferric reduction with ammonia oxidation phenomena in activated sludge in anaerobic environment[J]. Environmental Science, 2016, 37(8): 3114-3119. | |
24 | SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72. |
25 | YANG Y F, JIN Z, QUAN X, et al. Transformation of nitrogen and iron species during nitrogen removal from wastewater via Feammox by adding ferrihydrite[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14394-14402. |
26 | YANG Y F, ZHANG Y B, LI Y, et al.Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(Ⅲ) compounds[J]. Chemical Engineering Journal, 2018, 332: 711-716. |
27 | DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. |
28 | QIN Y B, DING B J, LI Z K, et al. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China[J]. Environmental Pollution, 2019, 252: 119-127. |
29 | DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231(1): 379-386. |
30 | SHUAI W T, JAFFE P R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984-992. |
31 | YAO Z B, YANG L, SONG N, et al. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake[J]. Environmental Science and Pollution Research International, 2020, 27(21): 25899-25907. |
32 | LI X, HUANG Y, LIU H W, et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64(2): 42-50. |
33 | WANG X, SHU D T, YUE H. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe(Ⅲ) supplementation[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10147-10163. |
34 | HUANG S, JAFFÉ P R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. PLoS One, 2018, 13(4): e0194007. |
35 | YANG Y F, PENG H, NIU J F, et al. Promoting nitrogen removal during Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247: 973-979. |
36 | YAMAMURA S, SUDO T, WATANABE M, et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342: 571-578. |
37 | YIN S Y, LI J, DONG H Y, et al. Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(Ⅲ) addition: nitrogen shock loading and community structure[J]. Bioresource Technology, 2019, 287: 121405-121411. |
38 | 吴彦成, 顾鑫, 朱继涛, 等. 铁氨氧化污水生物脱氮技术的研究进展[J]. 中国给水排水, 2020, 36(18): 38-44. |
WU Y C, GU X, ZHU J T, et al. Research advances of biological nitrogen removal from wastewater via Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidatiion (Feammox) process[J]. China Water & Wastewater, 2020, 36 (18): 38-44. | |
39 | HUANG S, JAFFÉ P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3): 769-779. |
40 | ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307. |
41 | 陈方敏, 金润, 袁砚, 等. 温度和pH值对铁盐型氨氧化过程氮素转化的影响[J]. 环境科学, 2018, 39(9): 4289-4293. |
CHEN F M, JIN R, YUAN Y, et al. Effect of temperature and pH on nitrogen conversion in Feammox process[J]. Environmental Science, 2018, 39(9): 4289-4293. | |
42 | 刘恒蔚, 毕玮, 李祥, 等. 厌氧氨氧化与铁氨氧化反应器功能微生物对比研究[J]. 环境科学与技术, 2020, 43(6): 39-45. |
LIU H W, BI W, LI X, et al. Comparative anslysis of functional bacteria communities in Feammox and Anammox reactors[J]. Environmental Science & Technology, 2020, 43(6): 39-45. | |
43 | WEBER K A, URRUTIA M M, CHURCHILL P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental Microbiology, 2006, 8(1): 100-113. |
44 | JIA R, LI L N, QU D, et al. Enhanced iron(Ⅲ) reduction following amendment of paddy soils with biochar and glucose modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(1): 91-103. |
45 | 吴胤, 陈琛, 毛小云, 等. 基于Feammox的生物膜反应器性能研究[J]. 中国环境科学, 2017, 37(9): 3353-3362. |
WU Y, CHEN C, MAO X Y, et al. Study on performance of the Feammox biofilm-reactor[J]. China Environmental Science, 2017, 37(9): 3353-3362. | |
46 | ZHANG M, ZHENG P, WANG R, et al. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology[J]. Chemosphere, 2014, 117: 604-609. |
47 | CARLSON H K, CLARK I C, BLAZEWICZ S J, et al. Fe(Ⅱ) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions.[J]. Journal of Bacteriology, 2013, 195(14): 3260-3268. |
48 | ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. |
49 | 王茹, 赵治国, 郑平, 等. 铁型反硝化: 一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(4): 2003-2010. |
WANG R, ZHAO Z G, ZHENG P, et al. Iron-dependent denitrification, a novel technology to remove nitrogen from wastewaters[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2003-2010. | |
50 | ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
51 | KANAPARTHI D, POMMERENKE B, CASPER P, et al. Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3[J]. The ISME Journal, 2013, 7(8): 1582-1594. |
52 | ZHOU S, BORJIGIN S, RIYA S, et al. The relationship between anammox and denitrification in the sediment of an inland river[J]. Science of the Total Environment, 2014, 490: 1029-1036. |
53 | LIU Y, FENG C P, SHENG Y Z, et al. Effect of Fe(Ⅱ) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(Ⅱ)-contaminated groundwater[J]. Ecotoxicology and Environmental Safety, 2018, 166: 437-445. |
54 | BI Z, ZHANG W J, SONG G, et al. Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: a novel prospective scheme for autotrophic nitrogen removal[J]. Science of the Total Environment, 2019, 692: 582-588. |
55 | DING B J, ZHANG H, LUO W Q, et al. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 2021, 773: 145601. |
56 | XIE F, MA X, ZHAO B W, et al. Promoting the nitrogen removal of anammox process by Fe-C micro-electrolysis[J]. Bioresource Technology, 2020, 297: 122429. |
57 | 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5): 2265-2272, 1935. |
WU Y X, ZENG W, LIU H, et al. Exploration of on nitrogen transformation pathway in Feammox system[J]. CIESC Journal, 2020, 71(5): 2265-2272, 1935. | |
3 | 张蔚萍, 陈建中.低碳高浓度含氮废水的生物脱氮技术[J].环境保护, 2003, 31(6): 20-21. |
ZHANG W P, CHEN J Z. Biological denitrification of low carbon and high nitrogen concentration wastewater [J].Environmental Protection, 2003, 31(6): 20-21. | |
4 | JETTEN M S, STROUS M, DE PAS-SCHOONEN K T VAN, et al., The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. |
5 | KUAI L, VERSTRAETE W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and Environmental Microbiology, 1998, 64(11): 4500-4506. |
6 | PYNAERT K, WYFFELS S, SPRENGERS R, et al. Oxygen-limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium-rich wastewater[J]. Water Science and Technology, 2002, 45(10): 357-363. |
7 | MOON J, HWANG Y, KIM J, et al. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur[J]. Water Science & Technology, 2016, 74(4): 805-815. |
8 | 陶美霞, 陈明, 胡兰文, 等. 生物技术在处理氨氮废水中的研究进展[J]. 现代化工, 2018, 38(12): 24-28. |
TAO M X, CHEN M, HU L W, et al. Research progress of new biotechnology in treatment of ammonia-containing wastewater [J]. Modern Chemical Industry, 2018, 38(12): 24-28. | |
9 | 娄宏伟, 雷鑫, 陈元彩. 生物脱氮的研究进展[J]. 工业水处理, 2019, 39(5): 1-4. |
[1] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[2] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[3] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[4] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[5] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[6] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[7] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[8] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[9] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[10] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[11] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[12] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[13] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[14] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[15] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |