化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2509-2516.DOI: 10.16085/j.issn.1000-6613.2020-1195
赵振伟1(), 陈雷1,2(
), 伊晓路1,2, 孙来芝1,2, 谢新苹1,2, 杨双霞1,2, 华栋梁1,2(
)
收稿日期:
2020-06-28
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
陈雷,华栋梁
作者简介:
赵振伟(1997—),男,硕士研究生,研究方向为生物质综合利用。E-mail:基金资助:
ZHAO Zhenwei1(), CHEN Lei1,2(
), YI Xiaolu1,2, SUN Laizhi1,2, XIE Xinping1,2, YANG Shuangxia1,2, HUA Dongliang1,2(
)
Received:
2020-06-28
Online:
2021-05-06
Published:
2021-05-24
Contact:
CHEN Lei,HUA Dongliang
摘要:
生物质作为唯一含碳的可再生能源受到广泛关注。由于生物质具有含水率高、氧含量高、热值低等特性,在生物质热解气化中存在热转化效率低、焦油含量高、产品气热值低等问题。烘焙预处理对于改善生物质原料特性和提升热解气化性能具有积极的影响。本文阐述了烘焙预处理技术对于纤维素类生物质原料的疏水性、可磨性、元素组成、能量密度以及热解气化中产生的产品气组分、焦油组分、产品气热值等方面的影响。原料经烘焙预处理后疏水性、可磨性增强,热值增加,提升了原料品质。同时,经烘焙预处理的纤维素类生物质原料可明显提高热解气化性能,产品气中可燃气体组分含量、产量以及热值得到提升,焦油含量明显下降,提高了热解气化的产品气燃烧性能和利用品质。下一步应开展烘焙与热解气化耦合工艺及应用模式研究,提高生物质热解气化的整体经济性和产品附加值。
中图分类号:
赵振伟, 陈雷, 伊晓路, 孙来芝, 谢新苹, 杨双霞, 华栋梁. 烘焙提升纤维素类生物质热解气化性能的研究进展[J]. 化工进展, 2021, 40(5): 2509-2516.
ZHAO Zhenwei, CHEN Lei, YI Xiaolu, SUN Laizhi, XIE Xinping, YANG Shuangxia, HUA Dongliang. Research advances in improvement of cellulosic biomass pyrolysis/gasification process by torrefaction[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2509-2516.
样品 | 元素分析/% | O/C | H/C | 各组分质量分数/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | 半纤维素 | 纤维素 | 木质素 | 萃取物 | |||
REC | 48.6 | 5.6 | 0.4 | 45.4 | 0.93 | 0.12 | 23.4 | 45.8 | 26.7 | 4.1 |
TEC-220-40 | 50.6 | 5.4 | 0.4 | 43.6 | 0.86 | 0.10 | 21.5 | 47.4 | 28.3 | 2.8 |
TEC-250-40 | 53.9 | 5.1 | 0.6 | 40.4 | 0.75 | 0.09 | 16.4 | 40.7 | 39.8 | 3.1 |
TEC-280-40 | 57.3 | 4.9 | 0.8 | 37 | 0.65 | 0.08 | 10.2 | 34.3 | 52.8 | 2 |
表1 烘焙前后桉树组成变化[33]
样品 | 元素分析/% | O/C | H/C | 各组分质量分数/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | 半纤维素 | 纤维素 | 木质素 | 萃取物 | |||
REC | 48.6 | 5.6 | 0.4 | 45.4 | 0.93 | 0.12 | 23.4 | 45.8 | 26.7 | 4.1 |
TEC-220-40 | 50.6 | 5.4 | 0.4 | 43.6 | 0.86 | 0.10 | 21.5 | 47.4 | 28.3 | 2.8 |
TEC-250-40 | 53.9 | 5.1 | 0.6 | 40.4 | 0.75 | 0.09 | 16.4 | 40.7 | 39.8 | 3.1 |
TEC-280-40 | 57.3 | 4.9 | 0.8 | 37 | 0.65 | 0.08 | 10.2 | 34.3 | 52.8 | 2 |
样品 | 高热值/MJ·kg-1 | 堆积密度/kg·m-3 | 能量密度/MJ·m-3 |
---|---|---|---|
RPS | 16.67 | 162.30 | 2705.54 |
TPS-225-15 | 17.83 | 155.28 | 2768.64 |
TPS-225-30 | 18.25 | 152.90 | 2790.42 |
TPS-225-45 | 18.48 | 151.79 | 2805.08 |
TPS-250-15 | 19.54 | 144.67 | 2826.85 |
TPS-250-30 | 20.01 | 143.10 | 2863.43 |
TPS-250-45 | 20.09 | 140.65 | 2825.66 |
TPS-275-15 | 20.35 | 138.98 | 2828.24 |
TPS-275-30 | 20.92 | 135.95 | 2844.07 |
TPS-275-45 | 21.43 | 131.74 | 2823.19 |
表2 烘焙豆柄特性[38]
样品 | 高热值/MJ·kg-1 | 堆积密度/kg·m-3 | 能量密度/MJ·m-3 |
---|---|---|---|
RPS | 16.67 | 162.30 | 2705.54 |
TPS-225-15 | 17.83 | 155.28 | 2768.64 |
TPS-225-30 | 18.25 | 152.90 | 2790.42 |
TPS-225-45 | 18.48 | 151.79 | 2805.08 |
TPS-250-15 | 19.54 | 144.67 | 2826.85 |
TPS-250-30 | 20.01 | 143.10 | 2863.43 |
TPS-250-45 | 20.09 | 140.65 | 2825.66 |
TPS-275-15 | 20.35 | 138.98 | 2828.24 |
TPS-275-30 | 20.92 | 135.95 | 2844.07 |
TPS-275-45 | 21.43 | 131.74 | 2823.19 |
1 | WEN J L, SUN S L, YUAN T Q, et al. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction[J]. Applied Energy, 2014, 121: 1-9. |
2 | 贾爽, 应浩, 孙云娟, 等. 生物质水蒸气气化制取富氢合成气及其应用的研究进展[J]. 化工进展, 2018, 37(2): 497-504. |
JIA Shuang, YING Hao, SUN Yunjuan, et al. Research advance in biomass steam gasification for hydrogen-rich syngas and its application[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 497-504. | |
3 | 宁思云, 应浩, 徐卫, 等. 木炭水蒸气催化气化制取合成气[J]. 化工进展, 2019, 38(3): 1308-1315. |
NING Siyun, YING Hao, XU Wei, et al. Catalyst steam gasification of charcoal for syngas[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1308-1315. | |
4 | REN J, LIU Y L, ZHAO X Y, et al. Methanation of syngas from biomass gasification: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4223-4243. |
5 | SEPTIEN S, ESCUDERO SANZ F J, SALVADOR S, et al. The effect of pyrolysis heating rate on the steam gasification reactivity of char from woodchips[J]. Energy, 2018, 142: 68-78. |
6 | 董新新, 金保昇. 生物质燃气变换-甲烷化双功能催化剂研究进展[J]. 化工进展, 2019, 38(12): 5360-5371. |
DONG Xinxin, JIN Baosheng. Research progress of bifunctional catalysts for methanation coupling with water gas shift of biogas[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5360-5371. | |
7 | 贾爽, 应浩, 徐卫, 等. 生物质炭水蒸气气化制取富氢合成气[J]. 化工进展, 2018, 37(4):1402-1407. |
JIA Shuang, YING Hao, XU Wei, et al. Steam gasification of bio-char for hydrogen-rich syngas[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1402-1407. | |
8 | 杨晴, 梅艳阳, 郝宏蒙, 等. 烘焙对生物质热解产物特性的影响[J]. 农业工程学报, 2013, 29(20): 214-219. |
YANG Qing, MEI Yanyang, HAO Hongmeng, et al. Effect of torrefaction on characteristics of pyrolytic products of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 214-219. | |
9 | 范方宇, 李晗, 邢献军. 温度对玉米秸秆成型颗粒烘焙制备生物炭及其特性的影响[J]. 农业工程学报, 2019, 35(1): 220-226. |
FAN Fangyu, LI Han, XING Xianjun. Effect of temperature on preparation and characteristics of corn straw pellets torrefaction biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 220-226. | |
10 | 张雨, 王浚浩, 马中青, 等. 温度对竹材烘焙过程中气固液三相产物组成及特性的影响[J]. 农业工程学报, 2018, 34(18): 242-251. |
ZHANG Yu, WANG Junhao, MA Zhongqing, et al. Effects of torrefaction temperature on composition and characteristics of gas-solid-liquid three-phase products in bamboo torrefaction process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 242-251. | |
11 | CHEN Y C, CHEN W H, LIN B J, et al. Fuel property variation of biomass undergoing torrefaction[J]. Energy Procedia, 2017, 105: 108-112. |
12 | ZHAO C, QIAO X L, CAO Y, et al. Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops[J]. Fuel, 2017, 205: 184-191. |
13 | 夏先飞, 肖宏儒, 肖苏伟, 等. 生物质致密成型原料预处理技术研究进展及试验初探[J]. 中国农机化学报, 2018, 39(2): 61-66. |
XIA Xianfei, XIAO Hongru, XIAO Suwei, et al. Research on the raw materials pretreatment technology of biomass densification process[J]. Journal of Chinese Agriculture Mechanization, 2018, 39(2): 61-66. | |
14 | 刘华敏,马明国,刘玉兰.预处理技术在生物质热化学转化中的应用[J]. 化学进展, 2014, 26(1): 203-213. |
LIU Huamin, MA Mingguo, LIU Yulan. Applications of pretreatment in biomass thermo-chemical conversion technology[J]. Progress in Chemistry, 2014, 26(1): 203-213. | |
15 | 余维金, 应浩, 王燕杰. 原料烘焙预处理对生物质气化的影响综述[J]. 生物质化学工程, 2013, 47(6): 41-45. |
YU Weijin, YING Hao, WANG Yanjie. Influence of torrefaction pretreatment on biomass gasification[J]. Biomass Chemical Engineering, 2013, 47(6): 41-45. | |
16 | BACH Q V, SKREIBERG Ø, LEE C J. Process modeling and optimization for torrefaction of forest residues[J]. Energy, 2017, 138: 348-354. |
17 | KUMAR R, STREZOV V, WELDEKIDAN H, et al. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763. |
18 | YANG Y M, SUN M, ZHANG M, et al. A fundamental research on synchronized torrefaction and pelleting of biomass[J]. Renewable Energy, 2019, 142: 668-676. |
19 | 车庆丰, 梅艳阳, 杨晴, 等. 烘焙对生物质催化热解产物特性的影响研究[J]. 太阳能学报,2017, 38(8): 2027-2032. |
CHE Qingfeng, MEI Yanyang, YANG Qing, et al. Effect of torrefaction on characteristics of catalytic pyrolysis product of biomass[J]. Acta Energiae Solaris Sinica, 2017, 38(8): 2027-2032. | |
20 | PIMCHUAI A, DUTTA A, BASU P. Torrefaction of agriculture residue to enhance combustible properties[J]. Energy&Fuels,2010, 24(9): 4638-4645. |
21 | RIBEIRO J, GODINA R, MATIAS J, et al. Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development[J]. Sustainability, 2018, 10(7): 2323. |
22 | CHRISTOFOROU E A, FOKAIDES P A. Recent advancements in torrefaction of solid biomass[J]. Curr. Sustain. /Renew. Energy. Rep., 2018, 5(2): 163-171 |
23 | CONAG A T, VILLAHERMOSA J E R, CABATINGAN L K, et al. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5411-5419. |
24 | MANATURA K. Inert torrefaction of sugarcane bagasse to improve its fuel properties[J]. Case Studies in Thermal Engineering, 2020, 19: 100623. |
25 | LI M F, LI X, BIAN J, et al. Influence of temperature on bamboo torrefaction under carbon dioxide atmosphere[J]. Industrial Crops and Products, 2015, 76: 149-157. |
26 | KANWAL S, CHAUDHRY N, MUNIR S, et al. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse)[J]. Waste Management, 2019, 88: 280-290. |
27 | IROBA K L, BAIK O D, TABIL L G. Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption[J]. Biomass and Bioenergy, 2017, 106: 8-20. |
28 | WANG L, BARTA-RAJNAI E, SKREIBERG Ø, et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark[J]. Applied Energy, 2018, 227: 137-148. |
29 | 王贵军, 罗永浩, 邓剑, 等. 生物质的低温热解预处理实验研究[J]. 科学通报, 2010, 55(36): 3451-3457. |
WANG Guijun, LUO Yonghao, DENG Jian, et al. Pretreatment of biomass by torrefaction[J]. Chinese Sci. Bull., 2010, 56(36): 3451-3457. | |
30 | COLIN B, DIRION J L, ARLABOSSE P, et al. Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips[J]. Fuel, 2017, 197: 232-239. |
31 | CHEN Y W, CAO W Y, ATREYA A. An experimental study to investigate the effect of torrefaction temperature and time on pyrolysis of centimeter-scale pine wood particles[J]. Fuel Processing Technology, 2016, 153: 74-80. |
32 | CHEN D Y, GAO A J, MA Z Q, et al. In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield[J]. Bioresource Technology, 2018, 253: 148-153. |
33 | SINGH R K, SARKAR A, CHAKRABORTY J P. Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM) [J]. Energy, 2020, 198: 117369. |
34 | CHEN D Y, GAO A J, CEN K H, et al. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin[J]. Energy Conversion and Management, 2018, 169: 228-237. |
35 | 闻蕾, 王景甫, 韩恒超. 烘焙条件对生物质烘焙特性的影响[J]. 新能源进展, 2019, 7(2): 115-122. |
WEN Lei, WANG Jingfu, HAN Hengchao. Effect of torrefaction conditions on the torrefaction characteristics of biomass[J]. Advances in New and Renewable Energy, 2019, 7(2): 115-122. | |
36 | MAMVURA T A, DANHA G. Biomass torrefaction as an emerging technology to aid in energy production[J]. Heliyon, 2020, 6(3): e03531. |
37 | YUE Y, SINGH H, SINGH B, et al. Torrefaction of sorghum biomass to improve fuel properties[J]. Bioresour. Technol., 2017, 232: 372-379. |
38 | SINGH R K, SARKAR A, CHAKRABORTY J P. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters[J]. Renewable Energy, 2019, 138: 805-819. |
39 | 叶扬天, 卢平, 王昱璇, 等. 烘焙温度和停留时间对生物炭特性的影响[J]. 上海电力学院学报, 2018, 34(3): 239-244. |
YE Yangtian, LU Ping, WANG Yuxuan, et al. Influence of torrefaction temperature and residence time on biochar characteristics during biomass torrefaction[J]. Journal of Shanghai University of Electric Power, 2018, 34(3): 239-244. | |
40 | BACH Q V, GYE H R, SONG D, et al. High quality product gas from biomass steam gasification combined with torrefaction and carbon dioxide capture processes[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14387-14394. |
41 | BRACHI P, CHIRONE R, MICCIO F, et al. Entrained-flow gasification of torrefied tomato peels: combining torrefaction experiments with chemical equilibrium modeling for gasification[J]. Fuel, 2018, 220: 744-753. |
42 | HUANG J C, QIAO Y, WEI X F, et al. Effect of torrefaction on steam gasification of starchy food waste[J]. Fuel, 2019, 253: 1556-1564. |
43 | 冯宜鹏, 王小波, 赵增立, 等. 烘焙预处理对高含氮木质废弃物气流床气化特性与含氮污染物分布的影响研究[J]. 太阳能学报, 2018, 39(7): 1908-1916. |
FENG Yipeng, WANG Xiaobo, ZHAO Zengli, et al. Investigation on effect of torrefaction on characteristics and distributions of nitrogenous pollutants during entrained flow gasification of nitrogen-rich wood waste[J]. Acta Energiae Solaris Sinica, 2018, 39(7): 1908-1916. | |
44 | CHEW J J, SOH M, SUNARSO J, et al. Gasification of torrefied oil palm biomass in a fixed-bed reactor: effects of gasifying agents on product characteristics[J]. Journal of the Energy Institute, 2020, 93(2): 711-722. |
45 | TSALIDIS G A, DI MARCELLO M, SPINELLI G, et al. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood[J]. Biomass and Bioenergy, 2017, 106: 155-165. |
46 | DI M M, TSALIDIS G A, SPINELLI G, et al. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance[J]. Biomass and Bioenergy, 2017, 105: 411-420. |
47 | DUDYŃSKI M, VAN DYK J C, KWIATKOWSKI K, et al. Biomass gasification: influence of torrefaction on syngas production and tar formation[J]. Fuel Processing Technology, 2015, 131: 203-212. |
48 | PINTO F, GOMINHO J, ANDRÉ R N, et al. Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments[J]. Fuel, 2017, 206: 289-299. |
49 | KUO P C, WU W. Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal[J]. Chemical Engineering Science, 2016, 142: 201-214. |
50 | NGUYEN N M, ALOBAID F, MAY J, et al. Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor[J]. Energy, 2020, 202: 117744. |
51 | KIRSANOVS V, ZANDECKIS A. Investigation of biomass gasification process with torrefaction using equilibrium model[J]. Energy Procedia, 2015, 72: 329-336. |
52 | BACH Q V, NGUYEN D D, LEE C J. Effect of torrefaction on steam gasification of biomass in dual fluidized bed reactor—a process simulation study[J]. BioEnergy Research, 2019, 12(4): 1042-1051. |
53 | KUO P C, WU W, CHEN W H. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis[J]. Fuel, 2014, 117: 1231-1241. |
[1] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[2] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[3] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[4] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
[5] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
[6] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[7] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[8] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[9] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[10] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[11] | 刘环博, 李健, 颜蓓蓓, 董晓珊, 陈冠益. 湿式烘焙技术研究进展[J]. 化工进展, 2022, 41(6): 3221-3234. |
[12] | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41(3): 1125-1131. |
[13] | 梁金强, 刘丹竹, 徐庶亮, 叶茂, 刘中民. “双碳”目标下能源安全定量评价方法[J]. 化工进展, 2022, 41(3): 1622-1633. |
[14] | 杨永斌, 董寅瑞, 钟强, 李骞, 王林, 姜涛. 高温煤焦油沥青黏结剂碳化固结作用在炭质型材中的应用与研究进展[J]. 化工进展, 2022, 41(12): 6419-6429. |
[15] | 马紫峰, 贺益君, 陈建峰. 新能源化工技术[J]. 化工进展, 2021, 40(9): 4687-4695. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 963
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 378
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |