化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2496-2508.DOI: 10.16085/j.issn.1000-6613.2020-1149
张淑梅1,2(), 王允圃1,2(), 夏美玲1,2, 曾媛1,2, 刘玉环1,2, 姜林1,2, 田晓洁1,2, 曾子鸿1,2, 吴秋浩1,2, RUAN Roger3
收稿日期:
2020-06-22
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
王允圃
作者简介:
张淑梅(1997—),女,硕士研究生,研究方向为生物质催化热解。E-mail:基金资助:
ZHANG Shumei1,2(), WANG Yunpu1,2(), XIA Meiling1,2, ZENG Yuan1,2, LIU Yuhuan1,2, JIANG Lin1,2, TIAN Xiaojie1,2, ZENG Zihong1,2, WU Qiuhao1,2, RUAN Roger3
Received:
2020-06-22
Online:
2021-05-06
Published:
2021-05-24
Contact:
WANG Yunpu
摘要:
生物质热解所得目标产物生物油因高含氧量、组分复杂等问题难以直接应用,通过使用适宜的催化剂升级热解蒸气可实现生物油的脱氧提质。本文基于前人研究,首先总结了生物质催化热解中金属氧化物和分子筛催化剂的结构特点、催化原理与催化效果。然后详细介绍了微介孔复合型、金属氧化物/ZSM-5复合型双级催化体系的构建原理、催化模式及其对于生物质催化热解产物分布规律产生的影响,并说明了双级催化体系的可行性与实用性;同时概述了影响生物质催化热解的其他因素,包括原料特性、工艺参数、操作模式等。最后针对目前双级催化热解研究与发展中存在的问题,对进行双级催化模式的比较研究、改进催化体系以降低生产成本、发掘双级催化剂的多种使用价值等方向提出了展望。
中图分类号:
张淑梅, 王允圃, 夏美玲, 曾媛, 刘玉环, 姜林, 田晓洁, 曾子鸿, 吴秋浩, RUAN Roger. 生物质双级催化热解制备燃料化学品的研究进展[J]. 化工进展, 2021, 40(5): 2496-2508.
ZHANG Shumei, WANG Yunpu, XIA Meiling, ZENG Yuan, LIU Yuhuan, JIANG Lin, TIAN Xiaojie, ZENG Zihong, WU Qiuhao, RUAN Roger. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508.
催化 类型 | 催化剂 | 原料 | 催化剂作用 | 参考 文献 |
---|---|---|---|---|
核壳型 | ZSM-5、SBA-15、 核壳ZSM-5@SBA-15 | 玉米秸秆 | ZSM-5@SBA-15催化剂改善了传质扩散问题;使用ZSM-5@SBA-15比仅使用ZSM-5、SBA-15催化剂得到了更多的酚类、烃类化合物 | [ |
MCM-41、HY、 核壳HY/MCM-41 | 废轮胎 | HY/MCM-41在降低轮胎热解油中硫和多环芳烃含量、提高石油化工产量等方面应用前景广阔;HY/MCM-41的裂化活性、石化选择性高于纯HY和MCM-41 | [ | |
HZSM-5/MCM-41 | 稻壳、温室塑料薄膜 | 有助于芳烃的生成 | [ | |
ZSM-5/MCM-41 | 废弃农用地膜、 含可溶物的干酒糟 | ZSM-5/MCM-41催化比仅ZSM-5、MCM-41催化脱氧效果更好;利用核壳ZSM-5/MCM-41催化剂可显著提高生物油中的烃类得率 | [ | |
核壳ZSM-5@SBA-15 | 玉米秸秆 | 介孔壳部SBA-15促进了生物质热解蒸气传质,核部ZSM-5的酸性促进芳烃形成;适宜的SBA-15介孔壳层孔扩散长度利于大分子裂解成含氧中间体;介孔壳SBA-15的孔通道内酸性若过强,会促进焦炭生成并有不利影响 | [ | |
连续型 | MCM-41、HZSM-5 | 秸秆、皂角 | 添加MCM-41促使大分子化合物发生裂解并抑制焦炭生成,有利于延长HZSM-5的寿命 | [ |
连续型 核壳型 | HZSM-5/MCM-41 | 竹子 | 连续型催化在适宜条件下能促进烃类生成;核壳型催化灵活性高于连续型催化 | [ |
连续型 混合型 | Al-MCM-41、HZSM-5 | 山毛榉木质生物质 | 连续型催化可促进烃类、酚类、呋喃类、醇类等有利化合物的生成;HZSM-5与Al-MCM-41在连续催化和混合催化体系中可能存在协同效应;连续型催化对含氧化合物的裂化效果强于混合型催化 | [ |
表1 微介孔型复合催化剂
催化 类型 | 催化剂 | 原料 | 催化剂作用 | 参考 文献 |
---|---|---|---|---|
核壳型 | ZSM-5、SBA-15、 核壳ZSM-5@SBA-15 | 玉米秸秆 | ZSM-5@SBA-15催化剂改善了传质扩散问题;使用ZSM-5@SBA-15比仅使用ZSM-5、SBA-15催化剂得到了更多的酚类、烃类化合物 | [ |
MCM-41、HY、 核壳HY/MCM-41 | 废轮胎 | HY/MCM-41在降低轮胎热解油中硫和多环芳烃含量、提高石油化工产量等方面应用前景广阔;HY/MCM-41的裂化活性、石化选择性高于纯HY和MCM-41 | [ | |
HZSM-5/MCM-41 | 稻壳、温室塑料薄膜 | 有助于芳烃的生成 | [ | |
ZSM-5/MCM-41 | 废弃农用地膜、 含可溶物的干酒糟 | ZSM-5/MCM-41催化比仅ZSM-5、MCM-41催化脱氧效果更好;利用核壳ZSM-5/MCM-41催化剂可显著提高生物油中的烃类得率 | [ | |
核壳ZSM-5@SBA-15 | 玉米秸秆 | 介孔壳部SBA-15促进了生物质热解蒸气传质,核部ZSM-5的酸性促进芳烃形成;适宜的SBA-15介孔壳层孔扩散长度利于大分子裂解成含氧中间体;介孔壳SBA-15的孔通道内酸性若过强,会促进焦炭生成并有不利影响 | [ | |
连续型 | MCM-41、HZSM-5 | 秸秆、皂角 | 添加MCM-41促使大分子化合物发生裂解并抑制焦炭生成,有利于延长HZSM-5的寿命 | [ |
连续型 核壳型 | HZSM-5/MCM-41 | 竹子 | 连续型催化在适宜条件下能促进烃类生成;核壳型催化灵活性高于连续型催化 | [ |
连续型 混合型 | Al-MCM-41、HZSM-5 | 山毛榉木质生物质 | 连续型催化可促进烃类、酚类、呋喃类、醇类等有利化合物的生成;HZSM-5与Al-MCM-41在连续催化和混合催化体系中可能存在协同效应;连续型催化对含氧化合物的裂化效果强于混合型催化 | [ |
催化模式 | 催化剂 | 原料 | 催化剂作用 | 参考文献 |
---|---|---|---|---|
模式Ⅰ、模式Ⅱ、模式Ⅲ | CaO、Al2O3、 ZnO、ZSM-5 | 木屑 | CaO降低了羧酸有机物和甲氧基苯酚得率;Al2O3促进了含氧化合物(分子 量>109g·mol-1)的裂解;在模式Ⅱ催化下芳烃得率较高 | [ |
模式Ⅰ | CaO、HZSM-5 | 木聚糖、LLDPE | 双催化剂的使用显著提高了芳烃的得率;酸在热解过程中先被CaO还原成酮,然后在HZSM-5上进行芳构化反应 | [ |
MgO、HZSM-5 | 竹渣、废润滑油 | 双催化体系具有显著的脱氧和芳构化作用;MgO通过酮化和醛缩合反应表现出明显的脱酸作用 | [ | |
模式Ⅰ、模式Ⅲ | MgO、CaO、 SrO、HZSM-5 | 竹屑 | 模式Ⅲ比模式Ⅰ具有更显著的芳构化和脱氧活性;揭示了碱性催化剂与HZSM-5的协同作用;与模式Ⅰ相比,模式Ⅲ提高了苯酚的相对选择性 | [ |
MgO、HZSM-5 | 废轮胎、竹屑 | 在较高的HZSM-5比例下,模式Ⅰ能有效产生芳烃;不同HZSM-5/MgO质量比下,模式Ⅰ对烷基苯类物质有积极的累加效应 | [ |
表2 金属氧化物/ZSM-5催化剂
催化模式 | 催化剂 | 原料 | 催化剂作用 | 参考文献 |
---|---|---|---|---|
模式Ⅰ、模式Ⅱ、模式Ⅲ | CaO、Al2O3、 ZnO、ZSM-5 | 木屑 | CaO降低了羧酸有机物和甲氧基苯酚得率;Al2O3促进了含氧化合物(分子 量>109g·mol-1)的裂解;在模式Ⅱ催化下芳烃得率较高 | [ |
模式Ⅰ | CaO、HZSM-5 | 木聚糖、LLDPE | 双催化剂的使用显著提高了芳烃的得率;酸在热解过程中先被CaO还原成酮,然后在HZSM-5上进行芳构化反应 | [ |
MgO、HZSM-5 | 竹渣、废润滑油 | 双催化体系具有显著的脱氧和芳构化作用;MgO通过酮化和醛缩合反应表现出明显的脱酸作用 | [ | |
模式Ⅰ、模式Ⅲ | MgO、CaO、 SrO、HZSM-5 | 竹屑 | 模式Ⅲ比模式Ⅰ具有更显著的芳构化和脱氧活性;揭示了碱性催化剂与HZSM-5的协同作用;与模式Ⅰ相比,模式Ⅲ提高了苯酚的相对选择性 | [ |
MgO、HZSM-5 | 废轮胎、竹屑 | 在较高的HZSM-5比例下,模式Ⅰ能有效产生芳烃;不同HZSM-5/MgO质量比下,模式Ⅰ对烷基苯类物质有积极的累加效应 | [ |
1 | WANG Yunpu, WU Qiuhao, DUAN Dengle, et al. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock[J]. Bioresource Technology, 2018, 261: 306-312. |
2 | ZHANG Huiyan, XIAO Rui, JIN Baosheng, et al. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J]. Bioresource Technology, 2013, 140: 256-262. |
3 | HENG Lijun, ZHANG Huiyan, XIAO Jun, et al. Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2733-2740. |
4 | WANG Yunpu, WU Qiuhao, DAI Leilei, et al. Co-pyrolysis of wet torrefied bamboo sawdust and soapstock[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 211-216. |
5 | CHEN Dengyu, ZHOU Jianbin, ZHANG Qisheng, et al. Evaluation methods and research progresses in bio-oil storage stability[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 69-79. |
6 | WANG Yunpu, TIAN Xiaojie, ZENG Zihong, et al. Catalytic co-pyrolysis of alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system[J]. Waste Management, 2019, 88: 102-109. |
7 | PAYSEPAR Hooman, RAO Kasanneni Tirumala Venkateswara, YUAN Zhongshun, et al. Production of phenolic chemicals from hydrolysis lignin via catalytic fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104842. |
8 | 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Xu. Study on the reaction mechanism and regulation method of bio-oil deoxygenation during biomass pyrolysis process with Ca-based additives[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
9 | CHEN Xu, CHE Qingfeng, LI Shujuan, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
10 | LIU Changjun, WANG Huamin, KARIM Ayman M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
11 | STEFANIDIS Stylianos D, KALOGIANNIS Konstantinos G, ILIOPOULOU E F, et al. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
12 | ZHANG Chenting, HU Xun, GUO Hongyu, et al. Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 590-605. |
13 | CHE Qingfeng, YANG Minjiao, WANG Xianhua, et al. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust[J]. Fuel Processing Technology, 2019, 188: 146-152. |
14 | MOCHIZUKI Takehisa, ATONG Duangduen, CHEN Shih-Yuan, et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications, 2013, 36: 1-4. |
15 | TAN Yee Ling, ABDULLAH Ahmad Zuhairi, HAMEED Bassim H. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst[J]. Fuel, 2019, 245: 89-95. |
16 | STEFANIDIS Stylianos D, KARAKOULIA S A, KALOGIANNIS Konstantinos G, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
17 | RAHMAN Md Maksudur, CHAI Meiyun, SARKER Manobendro, et al. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical Py-GC/MS study[J]. Journal of the Energy Institute, 2020, 93(1): 425-435. |
18 | MA Zhiqiang, CUSTODIS Victoria, BOKHOVEN Jeroen A VAN. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis Science & Technology, 2014, 4(3): 766-772. |
19 | LU Qiang, ZHANG Zhifei, DONG Changqing, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820. |
20 | CHONG Yen Yee, Suchithra THANGALAZHY-GOPAKUMAR, Hoon Kiat NG, et al. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber[J]. Journal of Environmental Management, 2019, 247: 38-45. |
21 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
22 | ASADIERAGHI Masoud, DAUD Wan Mohd Ashri Wan, ABBAS Hazzim F. Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: a review[J]. RSC Advances, 2015, 5(28): 22234-22255. |
23 | RINALDI Roberto, Ferdi SCHÜTH. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science, 2009, 2(6): 610-626. |
24 | RAMYA G, SUDHAKAR R, JOICE J A I, et al. Liquid hydrocarbon fuels from jatropha oil through catalytic cracking technology using AlMCM-41/ZSM-5 composite catalysts[J]. Applied Catalysis A: General, 2012, 433/434: 170-178. |
25 | 朱文杰. MCM-41 介孔分子筛的制备及其重金属离子吸附研究[D]. 昆明: 昆明理工大学, 2013. |
ZHU Wenjie. Preparation of MCM-41 mesoporous molecular sieve and its adsorption of heavy metal ions[D]. Kunming: Kunming University of Science and Technology, 2013. | |
26 | YU Zhenting, JIANG Lin, WANG Yunpu, et al. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system[J]. Journal of Cleaner Production, 2020, 255: 120179. |
27 | TWAIQ Farouq A, MOHAMED Abdul Rahman, BHATIA Subhash. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios[J]. Microporous and Mesoporous Materials, 2003, 64(1/2/3): 95-107. |
28 | JACKSON Michael A, COMPTON David L, BOATENG Akwasi A. Screening heterogeneous catalysts for the pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 226-230. |
29 | 陶涛. MCM-41介孔分子筛的合成方法及催化性能研究[D]. 镇江: 江苏大学, 2006. |
TAO Tao. The research of synthesis and catalytic performance of MCM-41 mesoporous molecular sieves[D]. Zhenjiang: Jiangsu University, 2006. | |
30 | 朱永恒. 功能化有序介孔材料SBA-15的控制合成及其应用研究[D]. 上海: 上海大学, 2013. |
ZHU Yongheng. Controllable synthesis and application of functionalized ordered mesoporous materials SBA-15[D]. Shanghai: Shanghai University, 2013. | |
31 | XUE Xiangfei, LIU Yawen, WU Liu, et al. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@ SBA-15 catalyst for producing phenols and hydrocarbons[J]. Bioresource Technology, 2019, 289: 121691. |
32 | ZHANG Xuesong, LEI Hanwu, CHEN Shulin, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review[J]. Green Chemistry, 2016, 18(15): 4145-4169. |
33 | LI Lu, YAN Bin, LI Huaxiao, et al. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst[J]. Renewable Energy, 2020, 146: 643-650. |
34 | BAKAR Muhammad S ABU, TITILOYE James O. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368. |
35 | NISHU, LIU Ronghou, RAHMAN Md Maksudur, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
36 | ENGTRAKUL Chaiwat, MUKARAKATE Calvin, STARACE Anne K, et al. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors[J]. Catalysis Today, 2016, 269: 175-181. |
37 | MURATA Kazuhisa, LIU Yanyong, INABA Megumu, et al. Catalytic fast pyrolysis of jatropha wastes[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 75-82. |
38 | RAMYA G, SIVAKUMAR T, ARIF M, et al. Application of microporous catalysts in the production of biofuels from non edible vegetable oils and used restaurant oil[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(8): 878-885. |
39 | RAHMAN Md Maksudur, LIU Ronghou, CAI Junmeng. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oi—A review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
40 | NAMCHOT Witsarut, JITKARNKA Sirirat. Catalytic pyrolysis of waste tire using HY/MCM-41 core-shell composite[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 297-306. |
41 | LI Wenlin, ZHENG Jinyu, LUO Yibin, et al. Hierarchical zeolite Y with full crystallinity: formation mechanism and catalytic cracking performance[J]. Energy & Fuels, 2017, 31(4): 3804-3811. |
42 | LU Qiang, ZHU Xifeng, LI Wenzhi, et al. On-line catalytic upgrading of biomass fast pyrolysis products[J]. Chinese Science Bulletin, 2009, 54(11): 1941-1948. |
43 | LERICI Laura Carolina, RENZINI Maria Soledad, PIERELLA Liliana Beatriz. Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over H-Y[J]. Procedia Materials Science, 2015, 8: 297-303. |
44 | 黄朝晖, 刘乃旺, 姚佳佳, 等. USY分子筛表面酸性的调变及其在催化脱除芳烃中烯烃的应用[J]. 化工进展, 2016, 35(1): 138-144. |
HUANG Zhaohui, LIU Naiwang, YAO Jiajia, et al. Surface acid modification of zeolite and its application in removal of olefins in aromatics[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 138-144. | |
45 | LI Lu, DING Zhiyong, LI Kun, et al. Liquid hydrocarbon fuels from catalytic cracking of waste cooking oils using ultrastable zeolite USY as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 268-272. |
46 | 陈平, 高良军, 翟玉春. 微孔分子筛催化剂在芳酮合成中的应用[J]. 香料香精化妆品, 2008(1): 31-36. |
CHEN Ping, GAO Liangping, ZHAI Yuchun. Application advance of microporous molecular sieve in synthesis of aromatic ketone[J]. Flavour Fragrance Cosmetics, 2008(1): 31-36. | |
47 | MARCILLA A, G􀆕MEZ-SIURANA A, VALDÉS F. Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions: study of the evolution of the process[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 433-442. |
48 | WANG Shurong, ZHOU Yan, LIANG Tao, et al. Catalytic pyrolysis of mannose as a model compound of hemicellulose over zeolites[J]. Biomass and Bioenergy, 2013, 57: 106-112. |
49 | LI Zhaoying, ZHONG Zhaoping, ZHANG Bo, et al. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve[J]. Waste Management, 2020, 102: 561-568. |
50 | LI Zhaoying, ZHONG Zhaoping, ZHANG Bo, et al. Catalytic fast pyrolysis of bamboo over micro‐mesoporous composite molecular sieves[J]. Energy Technology, 2018, 6(4): 728-736. |
51 | SANG Yu, LIU Hongxiao, HE Shichao, et al. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. Journal of Energy Chemistry, 2013, 22(5): 769-777. |
52 | ZHANG Bo, ZHONG Zhaoping, LI Tong, et al. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 1-7. |
53 | WU Qiuhao, WANG Yunpu, JIANG Lin, et al. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: co-feeding of soapstock and straw in a downdraft reactor[J]. Bioresource Technology, 2020, 299: 122611. |
54 | RATNASARI Devy K, YANG Weihong, JÖNSSON Pär G. Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 454-464. |
55 | WILLIAMS Paul T, BRINDLE Alexander J. Catalytic pyrolysis of tyres: influence of catalyst temperature[J]. Fuel, 2002, 81(18): 2425-2434. |
56 | DŨNG N A, KLAEWKLA R, WONGKASEMJIT S, et al. Light olefins and light oil production from catalytic pyrolysis of waste tire[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 281-286. |
57 | XUE Xiangfei, WU Liu, WEI Xiaocui, et al. Product modification in catalytic fast pyrolysis of corn stalk: the decoupled effect of acidity and porosity within a core-shell micro-/mesoporous zeolite[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7445-7453. |
58 | CARLSON Torren R, Jungho JAE, LIN Yu Chuan, et al. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis, 2010, 270(1): 110-124. |
59 | DU Shoucheng, GAMLIEL David P, GIOTTO Marcus, et al. Coke formation of model compounds relevant to pyrolysis bio-oil over ZSM-5[J]. Applied Catalysis A: General, 2016, 513: 67-81. |
60 | 王佳. 生物质双级催化重整制备高品位液体燃料机制研究[D]. 南京: 东南大学, 2018. |
WANG Jia. Study on dual catalytic reforming of biomass to produce upgraded bio-oil[D]. Nanjing: Southeast University, 2018. | |
61 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. |
62 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. |
63 | ZHENG Yunwu, WANG Jida, LIU Can, et al. Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst[J]. Journal of the Energy Institute, 2020, 93(5): 1833-1847. |
64 | DING Kuan, ZHONG Zhaoping, WANG Jia, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86-92. |
65 | ZHENG Yunwu, TAO Lei, HUANG Yuanbo, et al. Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 355-366. |
66 | WANG Jia, ZHONG Zhaoping, DING Kuan, et al. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: study on synergistic effect of alkali metal oxides and HZSM-5[J]. Energy Conversion and Management, 2018, 176: 287-298. |
67 | CHENG Yuting, HUBER George W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5[J]. Green Chemistry, 2012, 14(11): 3114-3125. |
68 | WANG Jia, ZHANG Bo, ZHONG Zhaoping, et al. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: analytical PY-GC/MS study[J]. Energy Conversion and Management, 2017, 139: 222-231. |
69 | FAN Liangliang, CHEN Paul, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
70 | WANG Jia, ZHONG Zhaoping, DING Kuan, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Conversion and Management, 2019, 180: 60-71. |
71 | BRIDGWATER Anthony V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
72 | Güray YILDIZ, RONSSE Frederik, DUREN Ruben VAN, et al. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1596-1610. |
73 | Hae Won RYU, KIM Do Heui, Jungho JAE, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
74 | ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil[J]. Energy Conversion and Management, 2014, 87: 71-85. |
75 | DEMIRBAS A. Effect of temperature on pyrolysis products from biomass[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2007, 29(4): 329-336. |
76 | Funda ATEᶊ, IŞıKDAĞ Müjde Aslı. Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS[J]. Energy & Fuels, 2008, 22(3): 1936-1943. |
77 | FAN L, CHEN P, ZHOU N, et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin[J]. Bioresource Technology, 2018, 247: 851-858. |
78 | DE WILD Paul, REITH Hans, HEERES Erik. Biomass pyrolysis for chemicals[J]. Biofuels, 2011, 2(2): 185-208. |
79 | HU Xun, GHOLIZADEH Mortaza. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
80 | ZHOU Nan, LIU Shiyu, ZHANG Yaning, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264. |
81 | WAN S L, WANG Y. A review on ex situ catalytic fast pyrolysis of biomass[J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280-294. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[13] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |