化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2484-2495.DOI: 10.16085/j.issn.1000-6613.2020-1063
包文君1,2(), 李子富1,2(), 王雪梅1,2,3, 高瑞岭1,2, 程世昆1,2, 门玉1,2
收稿日期:
2020-06-12
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
李子富
作者简介:
包文君(1996—),女,硕士研究生,研究方向为微生物产油脂。E-mail:基金资助:
BAO Wenjun1,2(), LI Zifu1,2(), WANG Xuemei1,2,3, GAO Ruiling1,2, CHENG Shikun1,2, MEN Yu1,2
Received:
2020-06-12
Online:
2021-05-06
Published:
2021-05-24
Contact:
LI Zifu
摘要:
利用微生物油脂生产的生物柴油是替代传统化石燃料的绿色可再生能源,产油酵母是极具潜力的产油微生物。然而利用葡萄糖作为碳源成本较高,限制了微生物油脂合成技术的规模化应用,因而寻找廉价原料至关重要。本文基于产油酵母合成油脂的代谢机理,重点介绍了产油酵母利用4种廉价原料,即木质纤维素、粗甘油、有机废水和挥发性脂肪酸合成微生物油脂的研究进展。针对这些来自工农业副产物的廉价原料,分别讨论了其复杂成分对产油酵母生长和油脂合成产生的促进或抑制作用,分析总结了高效预处理、基因工程改造菌体以及微生物共培养等解决方案。通过以上分析,阐明了产油酵母利用廉价原料合成油脂的优点,提出了针对复杂成分和高有机质浓度的抑制性问题的解决方法,理清了未来研究的方向,有助于进一步推动廉价原料用于产油酵母生产油脂及可再生能源技术的发展。
中图分类号:
包文君, 李子富, 王雪梅, 高瑞岭, 程世昆, 门玉. 产油酵母利用廉价原料合成油脂的研究进展[J]. 化工进展, 2021, 40(5): 2484-2495.
BAO Wenjun, LI Zifu, WANG Xuemei, GAO Ruiling, CHENG Shikun, MEN Yu. Progress of oleaginous yeast utilizing low-cost substrates to synthesize lipids[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2484-2495.
1 | 王翠玲. 普鲁兰短梗霉P10菌株产油脂的研究[D]. 青岛: 中国海洋大学, 2014. |
WANG Cuiling. Studies on lipid production by the aureobasidium pullulans P10[D]. Qingdao: Ocean University of China, 2014. | |
2 | SHIELDS-MENARD S A, AMIRSADEGHI M, FRENCH W T, et al. A review on microbial lipids as a potential biofuel[J]. Bioresource Technology, 2018, 259: 451-460. |
3 | 刘军锋. 第三代生物柴油的开发研究[D]. 北京: 北京化工大学, 2013. |
LIU Junfeng. Research on third generation biodiesel[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
4 | SITEPU I R, GARAY L A, SESTRIC R, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production[J]. Biotechnology Advances, 2014, 32(7): 1336-1360. |
5 | FEI Q, CHANG H N, SHANG L, et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production[J]. Bioresource Technology, 2011, 102(3): 2695-2701. |
6 | YE Y L, HUANG Y, XIA A, et al. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity[J]. Bioresource Technology, 2018, 270:80-87. |
7 | FENG P Z, DENG Z Y, HU Z Y, et al. characterization of Chlorococcum pamirum as a potential biodiesel feedstock[J]. Bioresource Technology, 2014, 162:115-122. |
8 | SUN X, CAO Y, XU H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process[J]. Bioresource Technology, 2014, 155: 204-212. |
9 | MAHAN K M, LE R K, YUAN J, et al. A Review on the bioconversion of lignin to microbial lipid with oleaginous Rhodococcus opacus[J]. Journal of Biotechnology & Biomaterials, 2017, 7(2): 1000262. |
10 | KUMAR S, GUPTA N, PAKSHIRAJAN K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1630-1636. |
11 | KIM D H, LEE J H, HWANG Y, et al. Continuous cultivation of photosynthetic bacteria for fatty acids production[J]. Bioresource Technology, 2013, 148:277-282. |
12 | HARDE S M, WANG Z, HORNE M, et al. Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina[J]. Fuel, 2016, 175:64-74. |
13 | PAPANIKOLAOU S, RONTOU M, BELKA A, et al. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains[J]. Engineering in Life Sciences, 2017, 17(3): 262-281. |
14 | VENKATA SUBHASH G, VENKATA MOHAN S. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate[J]. Bioresource Technology, 2011, 102(19): 9286-9290. |
15 | KARAMEROU E E, THEODOROPOULOS C, WEBB C. Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis[J]. Engineering in Life Sciences, 2017, 17(3): 314-324. |
16 | HUANG C, CHEN X F, YANG X Y, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 2197-2204. |
17 | TSIGIE Y A, WANG C Y, TRUONG C T, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate[J]. Bioresource Technology, 2011, 102(19): 9216-9222. |
18 | 胡洋. 油脂酵母利用粗甘油发酵产微生物油脂的研究[D]. 广州: 华南理工大学, 2016. |
HU Yang. Study on the use of crude glycerol for microbial oil fermentation by oleaginous yeasts[D]. Guangzhou: South China University of Technology, 2016. | |
19 | MENG X, YANG J M, XU X, et al. Biodiesel production from oleaginous microorganisms[J]. Renewable Energy, 2009, 34(1): 1-5. |
20 | QIN L, LIU L, ZENG A P, et al. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts[J]. Bioresource Technology, 2017, 245: 1507-1519. |
21 | 杨晓兵. 圆红冬孢酵母油脂生产加工副产物再利用的研究[D]. 大连: 大连理工大学, 2015. |
YANG Xiaobing. Exhaustive recycling of the wastes from microbial lipid producing and processing with Rhodosproridium toruloides[D]. Dalian: Dalian University of Technology, 2015. | |
22 | 危臻. 基于木质纤维素生物炼制废物的微生物油脂生产及其机理研究[D]. 长沙: 湖南大学, 2015. |
WEI Zhen. Research on microbial lipid production and related mechanism based-on lignocellulose wastes from biorefinery process[D]. Changsha: Hunan University, 2015. | |
23 | BRAUNWALD T, FRENCH W T, CLAUPEIN W, et al. Economic assessment of microbial biodiesel production using heterotrophic yeasts[J]. International Journal of Green Energy, 2016, 13(3): 274-282. |
24 | DIAS C, SANTOS J, REIS A, et al. Yeast and microalgal symbiotic cultures using low-cost substrates for lipid production[J]. Bioresource Technology Reports, 2019, 7: 100261. |
25 | CHANG H N, KIM N-J, KANG J, et al. Biomass-derived volatile fatty acid platform for fuels and chemicals[J]. Biotechnology and Bioprocess Engineering, 2010, 15(1): 1-10. |
26 | ENSHAEIEH M, ABDOLI A, MADANI M, et al. Recycling of lignocellulosic waste materials to produce high-value products: single cell oil and xylitol[J]. International Journal of Environmental Science and Technology, 2014, 12(3): 837-846. |
27 | FEI Q, CHANG H N, SHANG L, et al. Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus[J]. Biotechnology and Bioprocess Engineering, 2011, 16(3): 482-487. |
28 | HUANG C, CHEN X F, XIONG L, et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization[J]. Biotechnology Advances, 2013, 31(2): 129-139. |
29 | 柳杰,刘文慧,王晚晴, 等. 产油微生物及其发酵原料的研究进展 [J]. 环境工程, 2017, 35(3): 132-136. |
LIU Jie, LIU Wenhui, WANG Wanqing, et al. Reaserch advances in oleaginous microorganisms and fermenting materials[J]. Environmental Engineering, 2017, 35(3): 132-136. | |
30 | 陈龙,余强,庄新姝. 木质纤维素类生物质组分分离研究进展[J]. 新能源进展, 2017, 5(6) : 450-456. |
CHEN Long, YU Qiang, ZHUANG Xinshu. Advances in separation of lignocellulose biomass components[J]. Advances in New and Renewable Energy, 2017, 5(6) : 450-456. | |
31 | 李得钊,胡芳,许秀葵, 等. 超声波强化木质纤维素预处理的研究进展[J]. 纤维素科学与技术, 2020, 2828(1): 69-77. |
LI Dezhao, HU Fang, XU Xiukui, et al. Progress of ultrasound intensification for lignocellulose pretreatment[J]. Journal of Cellucose Science and Technology, 2020, 28(01): 69-77. | |
32 | 曹运齐,解先利,郭振强. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang. Research progress on lignocellucose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
33 | AYADI I, BELGHITH H, GARGOURI A, et al. Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization[J]. Process Safety and Environmental Protection, 2018, 119: 104-114. |
34 | TSIGIE Y A, WANG C Y, KASIM N S, et al. Oil production from yarrowia lipolytica polg using rice bran hydrolysate[J]. Journal of Biomedicine and Biotechnology, 2012, 2012: 378-384. |
35 | DEEBA F, PRUTHI V, NEGI Y S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production[J]. Bioresource Technology, 2016, 213: 96-102. |
36 | SITEPU I R, JIN M, FERNANDEZ J E, et al. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7645-7657. |
37 | YAGUCHI A, ROBINSON A, MIHEALSICK E, et al. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous[J]. Microbial Cell Factories, 2017, 16(1): 206. |
38 | GAO Z, MA Y, WANG Q, et al. Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489[J]. Bioresource Technology, 2016, 218:373-379. |
39 | XU J, ZHAO X, WANG W, et al. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production[J]. Biochemical Engineering Journal, 2012, 65:30-36. |
40 | CHEN J, ZHANG X, YAN S, et al. Lipid production from fed-batch fermentation of crude glycerol directed by the kinetic study of batch fermentations[J]. Fuel, 2017, 209: 1-9. |
41 | DOBROWOLSKI A, MITULA P, RYMOWICZ W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica[J]. Bioresource Technology, 2016, 207:237-243. |
42 | SESTRIC R, MUNCH G, CICEK N, et al. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions[J]. Bioresource Technology, 2014, 164:41-46. |
43 | RYWIŃSKA A, JUSZCZYK P, WOJTATOWICZ M, et al. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications[J]. Biomass and Bioenergy, 2013, 48:148-166. |
44 | POLBUREE P, YONGMANITCHAI W, HONDA K, et al. Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density[J]. Biochemical Engineering Journal, 2016, 112:208-218. |
45 | MAGDOULI S, GUEDRI T, TAREK R, et al. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica[J]. Bioresource Technology, 2017, 243:57-68. |
46 | CHI Z Y, ZHENG Y B, MA J W, et al. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9542-9550. |
47 | LING J Y, NIP S, SHIM H. Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density[J]. Bioresource Technology, 2013, 146:301-309. |
48 | CHUNG J, LEE I, HAN J I. Biodiesel production from oleaginous yeasts using livestock wastewater as nutrient source after phosphate struvite recovery[J]. Fuel, 2016, 186:305-310. |
49 | 刘猛. 利用纤维素乙醇废水培养粘红酵母生产微生物油脂[D]. 北京:北京化工大学, 2017. |
LIU Meng. Utilization of Rhodotorula glutinis cultivation in cellulosic ethanal wastewater for production of microbial lipid[D]. Beijing: Beijing University Of Chemical Technology, 2017. | |
50 | MAGDOULI S, BRAR S K, BLAIS J F. Co-culture for lipid production: advances and challenges[J]. Biomass and Bioenergy, 2016, 92:20-30. |
51 | LING J Y, NIP S, CHEOK W L, et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater[J]. Bioresource Technology, 2014, 173:132-139. |
52 | QIN L, LIU L, WANG Z M, et al. Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae[J]. Bioresource Technology, 2018, 264:90-97. |
53 | ZHOU W W, WANG W R, LI Y H, et al. Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield[J]. Bioresource Technology, 2013, 127:435-440. |
54 | ZENG Y, XIE T H, LI P Y, et al. Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris[J]. Renewable Energy, 2018, 126:915-923. |
55 | LLAMAS M, TOMÁS-PEJ􀆕 E, GONZÁLEZ-FERNÁNDEZ C. Volatile fatty acids from organic wastes as novel low-cost carbon source for Yarrowia lipolytica[J]. New Biotechnology, 2020, 56:123-129. |
56 | LIU Jia, YUAN Ming, LIU Jianan, et al. Microbial conversion of mixed volatile fatty acids into microbial lipids by sequencing batch culture strategy[J]. Bioresource Technology, 2016, 222:75-81. |
57 | GAO R L, LI Z F, ZHOU X Q, et al. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production[J]. Biotechnology for Biofuels, 2017, 10: 1-15. |
58 | LIU J N, HUANG X F, CHEN R, et al. Efficient bioconversion of high-content volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology, 2017, 239:394-401. |
59 | LIU Z J, LIU L P, WEN P, et al. Effects of acetic acid and pH on the growth and lipid accumulation of the oleaginous yeast Trichosporon fermentans[J]. Bioresources, 2015, 10: 4152-4166. |
60 | GAO R, LI Z, ZHOU X, et al. Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions[J]. Biotechnology for Biofuels, 2020, 13: 1-16. |
61 | CHRISTOPHE G, DEO J L, KUMAR V, et al. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus[J]. Applied Biochemistry and Biotechnology, 2012, 167(5): 1270-1279. |
62 | XU X, KIM J Y, CHO H U, et al. Bioconversion of volatile fatty acids from macroalgae fermentation into microbial lipids by oleaginous yeast[J]. Chemical Engineering Journal, 2015, 264:735-743. |
63 | FONTANILLE P, KUMAR V, CHRISTOPHE G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2012, 114:443-449. |
64 | HUANG X F, LIU J N, LU L J, et al. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides[J]. Bioresource Technology, 2016, 206:141-149. |
65 | DONOT F, FONTANA A, BACCOU J C, et al. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics[J]. Biomass and Bioenergy, 2014, 68:135-150. |
66 | MAHAJAN D, SENGUPTA S, SEN S. Strategies to improve microbial lipid production: optimization techniques[J]. Biocatalysis and Agricultural Biotechnology, 2019, 22: 101321. |
67 | NIEHUS X, CRUTZ-LE COQ A M, SANDOVAL G, et al. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials[J]. Biotechnology for Biofuels, 2018, 11: 11. |
[1] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[2] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[3] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[4] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[5] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
[6] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[7] | 赵同心, 赵磊, 张延平, 李寅. 甲酸微生物转化研究进展[J]. 化工进展, 2023, 42(1): 67-72. |
[8] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[9] | 姚伦, 周雍进. 一碳化合物生物利用和转化研究进展[J]. 化工进展, 2023, 42(1): 16-29. |
[10] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[11] | 杨征, 谢永利, 杨光耀, 张立忠, 刘云想. 直冷式乏风热泵系统在小保当煤矿的应用分析[J]. 化工进展, 2022, 41(S1): 643-647. |
[12] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[13] | 李想, 葛武杰, 马先果, 彭工厂. 高镍正极材料微裂纹诱导容量衰减的应对策略研究进展[J]. 化工进展, 2022, 41(8): 4277-4287. |
[14] | 赵建兵, 杨丹, 舒原草, 朱俊波, 普仕萍, 宋晓丹, 刘守庆, 柴希娟, 李雪梅. Na2CO3/CF固体碱对菜籽油酯交换反应的催化性能[J]. 化工进展, 2022, 41(7): 3608-3614. |
[15] | 邹鹏程, 金光远, 李臻峰, 宋春芳, 韩太柏, 祝玉莲. 一种具有模式搅拌的微波反应釜内多物理场特性分析[J]. 化工进展, 2022, 41(5): 2301-2310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |