1 |
GONG Fuyu, CAI Zhen, LI Yin. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59(11): 1106-1114.
|
2 |
SCHWANDER Thomas, VON BORZYSKOWSKI Lennart Schada, BURGENER Simon, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904.
|
3 |
CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527.
|
4 |
XIAO Lu, LIU Guoxia, GONG Fuyu, et al. A minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2022, 12(1): 799-808.
|
5 |
ZHAO Tongxing, LI Yin, ZHANG Yanping. Biological carbon fixation: A thermodynamic perspective[J]. Green Chemistry, 2021, 23(20): 7852-7864.
|
6 |
FAST Alan G, PAPOUTSAKIS Eleftherios T. Functional expression of the clostridium ljungdahlii acetyl-coenzyme a synthase in clostridium acetobutylicum as demonstrated by a novel in vivo CO exchange activity en route to heterologous installation of a functional Wood-Ljungdahl pathway[J]. Applied and Environmental Microbiology, 2018, 84(7): e02307-17.
|
7 |
VUILLEUMIER Stéphane, CHISTOSERDOVA Ludmila, LEE Mingchun, et al. Methylobacterium genome sequences: A reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources[J]. PLoS One, 2009, 4(5): e5584.
|
8 |
RAGSDALE Stephen W, PIERCE Elizabeth. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta, 2008, 1784(12): 1873-1898.
|
9 |
BANG Junho, LEE Sang Yup. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): E9271-E9279.
|
10 |
TASHIRO Yohei, HIRANO Shinichi, MATSON Morgan M, et al. Electrical-biological hybrid system for CO2 reduction[J]. Metabolic Engineering, 2018, 47: 211-218.
|
11 |
YISHAI Oren, BOUZON Madeleine, Volker DÖRING, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(9): 2023-2028.
|
12 |
YISHAI Oren, GOLDBACH Leander, TENENBOIM Hezi, et al. Engineered assimilation of exogenous and endogenous formate in Escherichia coli [J]. ACS Synthetic Biology, 2017, 6(9): 1722-1731.
|
13 |
YU Hong, LIAO James C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9: 3992.
|
14 |
Hana SMEJKALOVÁ, Tobias J ERB, FUCHS Georg. Methanol assimilation in Methylobacterium extorquens AM1: Demonstration of all enzymes and their regulation[J]. PLoS One, 2010, 5(10): e13001.
|
15 |
KIRST Henning, FORMIGHIERI Cinzia, MELIS Anastasios. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size[J]. Biochimica et Biophysica Acta (BBA): Bioenergetics, 2014, 1837(10): 1653-1664.
|
16 |
SAKIMOTO Kelsey K, WONG Andrew Barnabas, YANG Peidong. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
|
17 |
HU Guipeng, LI Zehong, MA Danlei, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals[J]. Nature Catalysis, 2021, 4(5): 395-406.
|
18 |
NEVIN Kelly P, HENSLEY Sarah A, FRANKS Ashley E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886.
|
19 |
ZHANG Yanping, HUANG Zhihua, DU Chenyu, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol[J]. Metabolic Engineering, 2009, 11(2): 101-106.
|
20 |
BOLIVAR Juan M, WILSON Lorerna, FERRAROTTI Susana Alicia, et al. Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii [J]. Enzyme and Microbial Technology, 2007, 40(4): 540-546.
|
21 |
ANDREADELI Aggeliki, PLATIS Dimitris, TISHKOV Vladimir, et al. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+ [J]. FEBS Journal, 2008, 275(15): 3859-3869.
|
22 |
HATRONGJIT Rujirat, PACKDIBAMRUNG Kanoktip. A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: Screening, purification and characterization[J]. Enzyme and Microbial Technology, 2010, 46(7): 557-561.
|
23 |
FRIEDRICH Cornelius G, BOTHO Bowien, FRIEDRICH Barbel. Formate and oxalate metabolism in Alcaligenes eutrophus [J]. Journal of General Microbiology, 1979, 115: 185-192.
|
24 |
GLEIZER Shmnel, Roee BEN-NISSAN, BAR-ON Yinon M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263.e12.
|
25 |
GASSLER Thomas, SAUER Michael, GASSER Brigitte, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020, 38(2): 210-216.
|
26 |
BANG Junho, HWANG Chang Hun, Jung Ho AHN, et al. Escherichia coli is engineered to grow on CO2 and formic acid[J]. Nature Microbiology, 2020, 5(12): 1459-1463.
|
27 |
KIM Seohyoung, LINDNER Steffen N, ASLAN Selçuk, et al. Growth of Escherichia coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545.
|