1 |
王治红,丁晓明,吴明鸥,等.有机朗肯循环在多品位余热发电中的应用[J]. 化工进展, 2019, 38(5): 2189-2196.
|
|
WANG Zhihong, DING Xiaoming, WU Ming’ou, et al. Application of organic Rankine cycle in multi-grade waste heat power generation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2189-2196.
|
2 |
黄靖伦,王辉涛,葛众,等.双压膨胀有机朗肯循环中低温余热发电系统的热力性能[J]. 化工进展, 2018, 37(9): 3303-3311.
|
|
HUANG Jinglun, WANG Huitao, GE Zhong, et al. Thermodynamic performance of dual-pressure expansion organic Rankine cycle power generation system driven by low-middle temperature waste heat[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3303-3311.
|
3 |
LI Jian, GE Zhong, DUAN Yuanyuan, et al. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles[J]. Applied Energy, 2018, 217: 409-421.
|
4 |
WANG Mingtao, CHEN Yiguang, LIU Qiyi, et al. Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles[J]. Energy Conversion and Management, 2018, 177: 718-736.
|
5 |
LI Xinguo, ZHAO Cuicui, HU Xiaochen. Thermodynamic analysis of organic Rankine cycle with ejector[J]. Energy, 2012, 42(1): 342-349.
|
6 |
LI Xinguo, LI Xiajie, ZHANG Qilin. The first and second law analysis on an organic Rankine cycle with ejector[J]. Solar Energy, 2013, 93: 100-108.
|
7 |
KHEIRI R, GHAEBI H, EBADOLLAHI M, et al. Thermodynamic modeling and performance analysis of four new integrated organic Rankine cycles (a comparative study)[J]. Applied Thermal Engineering, 2017, 122: 103-117.
|
8 |
CHEN Jianyong, HUANG Yisheng, NIU Zhiting, et al. Performance analysis of a novel organic Rankine cycle with a vapor-liquid ejector[J]. Energy Conversion and Management, 2018, 157: 382-395.
|
9 |
ZHANG Chenghu, LIN Jiyou, TAN Yufei. A theoretical study on a novel combined organic Rankine cycle and ejector heat pump[J]. Energy, 2019, 176: 81-90.
|
10 |
LI Yourong, WANG Jianning, DU Meitang. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle[J]. Energy, 2012, 42(1): 503-509.
|
11 |
LI Yourong, WANG Jianning, DU Meitang, et al. Effect of pinch point temperature difference on cost-effective performance of organic Rankine cycle[J]. International Journal of Energy Research, 2013, 37(15): 1952-1962.
|
12 |
ERDEWEGHE S VAN, BAEL J VAN, LAENEN B, et al. Influence of the pinch-point-temperature difference on the performance of the Preheat-parallel configuration for a low-temperature geothermally-fed CHP[J]. Energy Procedia, 2017, 129: 10-17.
|
13 |
BUTCHER C J, REDDY B V. Second law analysis of a waste heat recovery based power generation system[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2355-2363.
|
14 |
GUO Cong, DU Xiaoze, YANG Lijun, et al. Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator[J]. Applied Thermal Engineering, 2014, 62(1): 176-186.
|
15 |
YU Haoshuai, FENG Xiao, WANG Yufei. A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (organic Rankine cycle) recovering waste heat[J]. Energy, 2015, 90: 36-46.
|
16 |
SARKAR J. Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery[J]. Energy, 2018, 143: 141-150.
|
17 |
李新国, 南来福, 孟庆良, 等.基于传热不可逆的有机朗肯循环热力学分析[J]. 中国电机工程学报, 2018, 38(3): 805-813.
|
|
LI Xinguo, Laifu NAN, MENG Qingliang, et al. Thermodynamic analysis of organic Rankine cycle based on irreversibility of heat transfer[J]. Proceedings of the CSEE, 2018, 38(3): 805-813.
|
18 |
LI Xinguo, Laifu NAN, MENG Qingliang, et al. Thermodynamic relation between irreversibility of heat transfer and cycle performance based on trapezoidal model[J]. Energy Conversion and Management, 2017, 154: 354-364.
|
19 |
LI Xinguo, WANG Jingyi, WU Xiaosong. Shift-characteristics and bounds of thermal performance of organic Rankine cycle based on trapezoidal model[J]. SCI. CHINA Tech. Sci., 2018, 61: 1802-1813.
|
20 |
李新国, 王伟, 翟哲, 等. 有机朗肯循环中的工质热源转折温度及其特征[J]. 化工进展, 2017, 39(9): 3223-3230.
|
|
LI Xinguo, WANG Wei, ZHAI Zhe, et al. Shift-temperature of heating fluid and its characteristics for working fluid in organic Rankine cycle[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3223-3230.
|
21 |
YU Jianlin, REN Yunfeng, HUA Chen, et al. Applying mechanical subcooling to ejector refrigeration cycle for improving the coefficient of performance[J]. Energy Conversion and Management, 2007, 48(4): 1193-1199.
|
22 |
BAI Tao, YAN Gang, YU Jianlin. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector[J]. Energy, 2015, 84: 325-335.
|
23 |
LIU Qiang, DUAN Yuanyuan, YANG Zhen. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids[J]. Applied Energy, 2014,115: 394-404.
|