化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6419-6429.DOI: 10.16085/j.issn.1000-6613.2022-0284
收稿日期:
2022-02-24
修回日期:
2022-05-15
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
钟强
作者简介:
杨永斌(1969—),男,教授,博士生导师,主要从事钢铁冶金与资源综合利用研究。E-mail:ybyangcsu@126.com。
基金资助:
YANG Yongbin(), DONG Yinrui, ZHONG Qiang(), LI Qian, WANG Lin, JIANG Tao
Received:
2022-02-24
Revised:
2022-05-15
Online:
2022-12-20
Published:
2022-12-29
Contact:
ZHONG Qiang
摘要:
高温煤焦油沥青(high temperature coal tar pitch,HTCTP)具有优良的润湿性和黏结性,可用作黏结剂。HTCTP黏结剂能与炭质颗粒物料产生良好的固结作用,因此在不同类型炭质型材的制备中获得广泛的应用与研究,HTCTP高温过程的黏结性能及碳化固结作用效果决定了炭质型材的机械强度和理化性能。本文综述了HTCTP作黏结剂制备炭质型材的一般工艺过程和相关研究进展,梳理了不同应用领域对HTCTP碳化固结作用的共性机制和个性特点,总结了HTCTP的性能影响因素及碳化固结作用机理。通过分析HTCTP不同组分在碳化固结过程中的作用及转化过程,揭示HTCTP碳化固结作用与炭质型材机械强度的关联机制及影响碳化固结强度的关键因素,提出强化HTCTP碳化固结作用的措施,提升HTCTP黏结剂在炭质型材制备中的应用效果。
中图分类号:
杨永斌, 董寅瑞, 钟强, 李骞, 王林, 姜涛. 高温煤焦油沥青黏结剂碳化固结作用在炭质型材中的应用与研究进展[J]. 化工进展, 2022, 41(12): 6419-6429.
YANG Yongbin, DONG Yinrui, ZHONG Qiang, LI Qian, WANG Lin, JIANG Tao. Application and research progress of carbonization consolidation of high temperature coal tar pitch binder in formed carbon material[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6419-6429.
参考文献 | 类别 | HTCTP 质量分数/% | HTCTP特性 | 制备的预焙阳极性能 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
软化点/℃ | 结焦值/% | TI含量/% | QI含量/% | 耐压强度/MPa | 电阻率/μΩ·m | 体积密度/g·cm-3 | ||||
GB/T 2290—2012 | 1号中温HTCTP | — | 80~90 | ≥45 | 15~25 | ≤10 | — | — | — | |
1号高温HTCTP | — | 95~100 | ≥52 | ≥24 | — | — | — | — | ||
[ | 高温HTCTP | 13.5~18.4 | 114 | 59 | 31.90 | 7.70 | 49.1±10.4 | 51±4 | 1.56±1.04 | |
高温HTCTP | 13.5~18.4 | 117 | 59 | 34.40 | 8.20 | 49.1±10.4 | 51±4 | 1.56±1.04 | ||
[ | 中温HTCTP | 15.0 | 84 | 42 | 19.97 | 5.67 | 30.15 | 53 | 1.61 | |
改性HTCTP | 15.0 | 105 | 50 | 27.48 | 9.10 | 35.33 | 49 | 1.62 | ||
改性HTCTP1 | 15.0 | 82 | 47 | 27.91 | 1.07 | 45.40 | 48 | 1.62 | ||
改性HTCTP2 | 15.0 | 104 | 50 | 29.65 | 1.15 | 48.73 | 47 | 1.63 | ||
[ | 改质HTCTP | — | 106 | 58 | 30.28 | 8.79 | 36.42 | 57 | 1.57 | |
改质HTCTP | — | 115 | 64 | 32.31 | 11.73 | 38.48 | 54 | 1.58 | ||
[ | HTCTP | 16.0 | — | — | — | — | 39.15 | 53 | 1.59 | |
HTCTP | 16.2 | — | — | — | — | 39.70 | 54 | 1.59 | ||
HTCTP | 16.8 | — | — | — | — | 38.71 | 55 | 1.58 | ||
YS/T 285—2007 | TY-1预焙阳极 | — | — | — | — | — | ≥32 | ≤55 | ≥1.53 | |
TY-2预焙阳极 | — | — | — | — | — | ≥30 | ≤60 | ≥1.50 |
表1 部分高温煤焦油沥青黏结剂特性及以其制备的预焙阳极制品性能[34-38]
参考文献 | 类别 | HTCTP 质量分数/% | HTCTP特性 | 制备的预焙阳极性能 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
软化点/℃ | 结焦值/% | TI含量/% | QI含量/% | 耐压强度/MPa | 电阻率/μΩ·m | 体积密度/g·cm-3 | ||||
GB/T 2290—2012 | 1号中温HTCTP | — | 80~90 | ≥45 | 15~25 | ≤10 | — | — | — | |
1号高温HTCTP | — | 95~100 | ≥52 | ≥24 | — | — | — | — | ||
[ | 高温HTCTP | 13.5~18.4 | 114 | 59 | 31.90 | 7.70 | 49.1±10.4 | 51±4 | 1.56±1.04 | |
高温HTCTP | 13.5~18.4 | 117 | 59 | 34.40 | 8.20 | 49.1±10.4 | 51±4 | 1.56±1.04 | ||
[ | 中温HTCTP | 15.0 | 84 | 42 | 19.97 | 5.67 | 30.15 | 53 | 1.61 | |
改性HTCTP | 15.0 | 105 | 50 | 27.48 | 9.10 | 35.33 | 49 | 1.62 | ||
改性HTCTP1 | 15.0 | 82 | 47 | 27.91 | 1.07 | 45.40 | 48 | 1.62 | ||
改性HTCTP2 | 15.0 | 104 | 50 | 29.65 | 1.15 | 48.73 | 47 | 1.63 | ||
[ | 改质HTCTP | — | 106 | 58 | 30.28 | 8.79 | 36.42 | 57 | 1.57 | |
改质HTCTP | — | 115 | 64 | 32.31 | 11.73 | 38.48 | 54 | 1.58 | ||
[ | HTCTP | 16.0 | — | — | — | — | 39.15 | 53 | 1.59 | |
HTCTP | 16.2 | — | — | — | — | 39.70 | 54 | 1.59 | ||
HTCTP | 16.8 | — | — | — | — | 38.71 | 55 | 1.58 | ||
YS/T 285—2007 | TY-1预焙阳极 | — | — | — | — | — | ≥32 | ≤55 | ≥1.53 | |
TY-2预焙阳极 | — | — | — | — | — | ≥30 | ≤60 | ≥1.50 |
图9 不同比例黏结剂制备的型焦产品的红外光谱图[46]1—60%低变质煤,5%HTCTP,15%炼焦煤,20%重油;2—60%低变质煤,10%HTCTP,20%炼焦煤,10%重油;3—60%低变质煤,15%HTCTP,15%炼焦煤,10%重油;4—60%低变质煤,20%HTCTP,10%炼焦煤,10%重油;5—60%低变质煤,15%HTCTP,10%炼焦煤,15%重油
1 | 常宏宏, 魏文珑, 王志忠, 等. 煤沥青的性质及应用[J]. 山西焦煤科技, 2007, 31(2): 39-42, 46. |
CHANG Honghong, WEI Wenlong, WANG Zhizhong, et al. Properties and application of coal pitch[J]. Shanxi Coking Coal Science & Technology, 2007, 31(2): 39-42, 46. | |
2 | 孟宇, 朱仕元, 彭娜, 等. 煤沥青基多孔碳材料研究进展[J]. 化工科技, 2020, 28(4): 73-76. |
MENG Yu, ZHU Shiyuan, PENG Na, et al. Research progress and prospect of coal asphaltene-based porous carbon materials[J]. Science & Technology in Chemical Industry, 2020, 28(4): 73-76. | |
3 | 郁健, 张德祥, 高晋生. 煤沥青热聚合改质研究[J]. 煤炭转化, 2005, 28(1): 69-73. |
YU Jian, ZHANG Dexiang, GAO Jinsheng. Study on the thermal polymerization modification of coal tar pitch[J]. Coal Conversion, 2005, 28(1): 69-73. | |
4 | 肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展, 2016, 35(6): 1804-1811. |
XIAO Nan, QIU Jieshan. Progress in synthesis and applications of functional carbon materials from coal tar pitch[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1804-1811. | |
5 | 王汝艳, 马凤云, 钟梅, 等. 中温和高温煤沥青的组成结构与性质[J]. 煤炭学报, 2020, 45(8): 2956-2967. |
WANG Ruyan, MA Fengyun, ZHONG Mei, et al. Structures and properties of medium-temperature and high-temperature coal tar pitches[J]. Journal of China Coal Society, 2020, 45(8): 2956-2967. | |
6 | 马欣如, 郭涛, 王群, 等. 煤沥青基吸水树脂的制备与性能[J]. 化工进展, 2021, 40(10): 5634-5641. |
MA Xinru, GUO Tao, WANG Qun, et al. Preparation and properties of coal pitch-based water-absorbing resin[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5634-5641. | |
7 | 许斌. 炭材料工业生产用黏结剂和浸渍剂煤沥青的再认识[J]. 炭素技术, 2011, 30(1): 35-39. |
XU Bin. A review on the binder and impregnant pitches used for the manufacture of carbon material[J]. Carbon Techniques, 2011, 30(1): 35-39. | |
8 | 吴碧英. 炭材料用煤沥青热解缩聚研究[D]. 武汉: 武汉科技大学, 2006. |
WU Biying. Study on the pyrolysis condensation of coal-tar pitch used for carbon materials manufacture[D]. Wuhan: Wuhan University of Science and Technology, 2006. | |
9 | 王海洋, 朱洪喆, 王守凯, 等. 煤沥青基多孔炭材料的研究进展[J]. 功能材料, 2019, 50(8): 8032-8039. |
WANG Haiyang, ZHU Hongzhe, WANG Shoukai, et al. Research progress of coal-tar pitch based porous carbon materials[J]. Journal of Functional Materials, 2019, 50(8): 8032-8039. | |
10 | 臧娜, 和凤祥, 王海洋, 等. 高附加值煤沥青制备及应用研究进展[J]. 辽宁化工, 2021, 50(8): 1166-1171. |
ZANG Na, HE Fengxiang, WANG Haiyang, et al. Research progress in preparation and application of high value-added coal pitch[J]. Liaoning Chemical Industry, 2021, 50(8): 1166-1171. | |
11 | 罗同仁, 高克萱. 煤沥青深加工工艺与黏结剂的性能[J]. 燃料与化工, 2000, 31(5): 246-250, 260. |
LUO Tongren, GAO Kexuan. Coal tar pitch further processing process and property of binder[J]. Fuel & Chemical Processes, 2000, 31(5): 246-250, 260. | |
12 | 潘立慧, 方庆舟, 许斌. 黏结剂用煤沥青的发展状况[J]. 炭素, 2001(3): 33-42. |
PAN Lihui, FANG Qingzhou, XU Bin. Development situation of coal-tar binder[J]. Carbon, 2001(3): 33-42. | |
13 | 赵亚楠. 初探煤沥青及其应用[J]. 炭素, 2019(3): 31-35. |
ZHAO Yanan. Preliminary exploration of coal bitumen and its application[J]. Carbon, 2019(3): 31-35. | |
14 | 陈泽永. 改质沥青对电解铝用预焙阳极性能的影响研究[D]. 长沙: 湖南大学, 2010. |
CHEN Zeyong. The influence of modified pitch on the properties of pre-baked anodes for electrolytic aluminum[D]. Changsha: Hunan University, 2010. | |
15 | 王东. 煤沥青及煤焦油改质沥青综述[J]. 广州化工, 2010, 38(5): 68-70. |
WANG Dong. An overview of coal tar based pitch and modified coal tar pitch[J]. Guangzhou Chemical Industry, 2010, 38(5): 68-70. | |
16 | 骆仲泱, 王少鹏, 方梦祥, 等. 煤焦油沥青的深度利用及发展前景[J]. 化工进展, 2016, 35(2): 611-616. |
LUO Zhongyang, WANG Shaopeng, FANG Mengxiang, et al. Further processing and prospect of coal tar pitch utilization[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 611-616. | |
17 | ZHANG Guojie, SUN Yinghui, XU Ying. Review of briquette binders and briquetting mechanism[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 477-487. |
18 | 吴浩波, 吕晓丽, 王文婧, 等. 煤质柱状活性炭的研究及应用进展[J]. 陕西煤炭, 2020, 39(S1): 184-188, 193. |
WU Haobo, Xiaoli LYU, WANG Wenjing, et al. Research and application progress of coal-based columnar activated carbon[J]. Shaanxi Coal, 2020, 39(S1): 184-188, 193. | |
19 | 孙仲超. 我国煤基活性炭生产现状与发展趋势[J]. 煤质技术, 2010(4): 49-52. |
SUN Zhongchao. The present status and development trend of coal based activated carbon industry[J]. Coal Quality Technology, 2010(4): 49-52. | |
20 | 李志鹏, 张小虎, 张军民. 高温煤焦油的应用现状分析[J]. 广东化工, 2012, 39(11): 115-116. |
LI Zhipeng, ZHANG Xiaohu, ZHANG Junmin. The research on application status of coal tar from high temperature coal carbonization[J]. Guangdong Chemical Industry, 2012, 39(11): 115-116. | |
21 | 闫修谨, 李玉财, 邵忠亮, 等. 黏结剂用沥青的生产[J]. 炭素技术, 2001, 20(4): 34-38. |
YAN Xiujin, LI Yucai, SHAO Zhongliang, et al. Production of pitch used for binder[J]. Carbon Techniques, 2001, 20(4): 34-38. | |
22 | WALLOUCH R W, MURTY H N, HEINTZ E A. Pyrolysis of coal tar pitch binders[J]. Carbon, 1972, 10(6): 729-735. |
23 | 田斌, 徐亚运, 曾俊, 等. 以煤沥青为黏结剂制备柱状活性炭的工艺参数优化[J]. 广东化工, 2013, 40(16): 11-13. |
TIAN Bin, XU Yayun, ZENG Jun, et al. Optimization of preparation parameters in columnar activated carbon with a new binder based on coal tar pitch[J]. Guangdong Chemical Industry, 2013, 40(16): 11-13. | |
24 | TIAN Bin, LI Pengfei, LI Dawei, et al. Preparation of micro-porous monolithic activated carbon from anthracite coal using coal tar pitch as binder[J]. Journal of Porous Materials, 2018, 25(4): 989-997. |
25 | ALCAÑIZ-MONGE J, MARCO-LOZAR J P, LOZANO-CASTELLÓ D. Monolithic carbon molecular sieves from activated bituminous coal impregnated with a slurry of coal tar pitch[J]. Fuel Processing Technology, 2012, 95: 67-72. |
26 | MIURA Kouichi, HAYASHI Junichi, HASHIMOTO Kenji. Production of molecular sieving carbon through carbonization of coal modified by organic additives[J]. Carbon, 1991, 29(4/5): 653-660. |
27 | BANSAL R C, GOYAL M. Activated carbon adsorption[M]. New York: Marcel Dekker Inc., 2005. |
28 | LINARES-SOLANO A, LOZANO-CASTELLO D, LILLO-RÓDENAS M, et al. Carbon activation by alkaline hydroxides preparation and reactions, porosity and performance[J]. Chemistry and Physics of Carbon, 2008, 30: 1-62. |
29 | 许斌, 郭德英, 张雪红, 等. 煤沥青热解缩聚行为的研究[J]. 武汉科技大学学报(自然科学版), 2004, 27(1): 24-27. |
XU Bin, GUO Deying, ZHANG Xuehong, et al. Characteristics of coal-tar pitch pyro-condensation[J]. Journal of Wuhan University of Science and Technology, 2004, 27(1): 24-27. | |
30 | KVANDE Halvor, DRABLØS Per Arne. The aluminum smelting process and innovative alternative technologies[J]. Journal of Occupational and Environmental Medicine, 2014, 56(S5): S23-S32. |
31 | HUSSEIN Asem, LU Ying, MOLLAABBASI Roozbeh, et al. Bio-pitch as a binder in carbon anodes for aluminum production: bio-pitch properties and its interaction with coke particles[J]. Fuel, 2020, 275: 117875. |
32 | 王平甫. 铝电解炭阳极生产与应用[M]. 北京: 冶金工业出版社, 2005. |
WANG Pingfu. Production and application of carbon anode in aluminum electrolysis[M]. Beijing: Metallurgical Industry Press, 2005. | |
33 | XIAO J, DING Feng-qin, LI Junlin, et al. Industrial testing of property-modified prebaked carbon anode for aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(3): 686-689. |
34 | 钟丽君. 原料对阳极质量影响的研究[D]. 沈阳: 东北大学, 2006. |
ZHONG Lijun. Study on the effect of raw material on anode quality[D]. Shenyang: Northeastern University, 2006. | |
35 | 李纯, 陆惠国, 高东善, 等. 应用改性煤沥青技术研究开发优质预焙阳极(上)[J]. 轻金属, 2008(5): 41-43. |
LI Chun, LU Huiguo, GAO Dongshan, et al. Developing premium pre-baked anode with reformed coal pitch technology(Part A)[J]. Light Metals, 2008(5): 41-43. | |
36 | 李纯, 陆惠国, 高东善, 等. 应用改性煤沥青技术研究开发优质预焙阳极(下)[J]. 轻金属, 2008(7): 39-43. |
LI Chun, LU Huiguo, GAO Dongshan, et al. Developing premium pre-baked anode with reformed coal pitch technology(Part B)[J]. Light Metals, 2008(7): 39-43. | |
37 | 张伟琦. 高结焦值沥青在阳极生产应用实践[J]. 轻金属, 2020(11): 36-39. |
ZHANG Weiqi. Application practice of high coking value asphalt in anode production[J]. Light Metals, 2020(11): 36-39. | |
38 | 王敏. 黏结剂煤沥青性能及含量对预焙阳极质量的影响[J]. 轻金属, 2016(3): 23-27. |
WANG Min. Effects of coal-tar pitch binder’s performance and content on the prebaked anode quality[J]. Light Metals, 2016(3): 23-27. | |
39 | 余萍, 李兆阳, 于易如. 预焙阳极用黏结剂沥青最佳加入量的研究[J]. 轻金属, 2019(10): 45-57. |
YU Ping, LI Zhaoyang, YU Yiru. Study on optimal addition of binder pitch for perbaked anode[J]. Light Metals, 2019(10): 45-57. | |
40 | 许斌, 李铁虎, 潘立慧, 等. 热聚合改质过程中煤沥青组分转变规律的研究[J]. 煤炭转化, 2002, 25(2): 86-90. |
XU Bin, LI Tiehu, PAN Lihui, et al. Study on the conversion rule of coal-tar pitch components during the thermal polymerization modification[J]. Coal Conversion, 2002, 25(2): 86-90. | |
41 | R&D炭素有限公司. 铝用炭阳极技术[M]. 李庆义, 贾鲁宁, 刘改云, 译. 北京: 冶金工业出版社, 2007. |
R&D Carbon Ltd. Anodes for the aluminum industry[M]. LI Qingyi, JIA Luning, LIU Gaiyun, trans. Beijing: Metallurgical Industry Press, 2007. | |
42 | ZHONG Qiang, YANG Yongbin, JIANG Tao, et al. Xylene activation of coal tar pitch binding characteristics for production of metallurgical quality briquettes from coke breeze[J]. Fuel Processing Technology, 2016, 148: 12-18. |
43 | 钟强, 杨永斌, 李骞, 等. 型焦煤沥青黏结性能的强化[J]. 中南大学学报(自然科学版), 2016, 47(12): 3971-3976. |
ZHONG Qiang, YANG Yongbin, LI Qian, et al. Intensification cohesiveness of coal tar pitch used in formed coke[J]. Journal of Central South University (Science and Technology), 2016, 47(12): 3971-3976. | |
44 | YANG Yongbin, WANG Yaxuan, LI Qian, et al. Investigation of coal tar pitch binder for the production of formed coal briquettes for COREX from high volatile coal powder[C]//7th International Symposium on High-Temperature Metallurgical Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 11-18. |
45 | 杨永斌, 钟强, 姜涛, 等. 煤沥青型焦制备与固结机理[J]. 中南大学学报(自然科学版), 2016, 47(7): 2181-2188. |
YANG Yongbin, ZHONG Qiang, JIANG Tao, et al. Preparation and mechanism of formed coke with coal tar pitch as binder[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2181-2188. | |
46 | SONG Yonghui, HE Wenjin, MA Qiaona, et al. Effect of binder composition on the preparation of formed coke with low-rank coal[J]. International Journal of Coal Preparation and Utilization, 2020, 40(6): 376-388. |
47 | 尹宁, 宋永辉, 陈瑶, 等. 低变质粉煤与沥青成型热解制备型焦的研究[J]. 煤炭转化, 2019, 42(2): 25-31. |
YIN Ning, SONG Yonghui, CHEN Yao, et al. Study on preparation of formed coke from co-pyrolysis of low rank pulverized coal and pitch[J]. Coal Conversion, 2019, 42(2): 25-31. | |
48 | AYSE Benk. Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behaviour[J]. Fuel Processing Technology, 2010, 91(9): 1152-1161. |
49 | AYSE Benk, COBAN Abdullah. Molasses and air blown coal tar pitch binders for the production of metallurgical quality formed coke from anthracite fines or coke breeze[J]. Fuel Processing Technology, 2011, 92(5): 1078-1086. |
50 | 杨燕红, 孙鸣, 刘媛媛, 等. 酚醛树脂改性煤焦油沥青的热解特性[J]. 煤炭转化, 2016, 39(1): 62-66. |
YANG Yanhong, SUN Ming, LIU Yuanyuan, et al. Pyrolysis characteristics of coal tar pitch modified by phenolic resin[J]. Coal Conversion, 2016, 39(1): 62-66. | |
51 | 周卓先. 采用改质沥青与中温沥青生产石墨电极对比[J]. 炭素技术, 2011, 30(4): 38-40. |
ZHOU Zhuoxian. Comparison of graphite with modified pitch and medium temperature pitch[J]. Carbon Techniques, 2011, 30(4): 38-40. | |
52 | 郑水山, 窦红兵, 李国军, 等. 煤沥青改质生产超高功率石墨电极用黏结剂的研究[J]. 煤炭加工与综合利用, 2005(6): 22-25, 59. |
ZHENG Shuishan, DOU Hongbing, LI Guojun, et al. Research on modification of coal asphalt as the binder for production of super-high capacity graphite electrode[J]. Coal Processing and Comprehensive Utilization, 2005(6): 22-25, 59. | |
53 | 舒成, 李克健, 舒歌平. 煤液化沥青用于石墨电极黏结剂的性能研究[J]. 炭素技术, 2018, 37(3): 53-55. |
SHU Cheng, LI Kejian, SHU Geping. The performance of coal liquefaction pitch for graphite electrode as adhesive[J]. Carbon Techniques, 2018, 37(3): 53-55. | |
54 | 黄诚, 程建萍, 李玉财. 石墨电极用黏结剂沥青生产新工艺[J]. 炭素技术, 2021, 40(1): 46-49. |
HUANG Cheng, CHENG Jianping, LI Yucai. A new process of binder pitch production for graphite electrode[J]. Carbon Techniques, 2021, 40(1): 46-49. | |
55 | BAO Jiwei, CHU Mansheng, WANG Hongtao, et al. Evolution characteristics and influence mechanism of binder addition on metallurgical properties of iron carbon agglomerates[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2785-2796. |
56 | BAO Jiwei, CHU Mansheng, HAN Dong, et al. Influences of coal tar pitch on metallurgical properties of iron carbon agglomerates[J]. Steel Research International, 2019, 90(12): 1900323. |
57 | 乐晨. 高聚物改性煤沥青及其在镁碳砖中的应用[D]. 武汉: 武汉科技大学, 2016. |
YUE Chen. Coal tar pitch modified by polymer and its application in magnesia carbon brick[D]. Wuhan: Wuhan University of Science and Technology, 2016. | |
58 | 宋士华, 吴崇俊, 马明亮, 等. 炭/炭复合材料用煤沥青的改性及性能研究[J]. 化工新型材料, 2007, 35(5): 45-47. |
SONG Shihua, WU Chongjun, MA Mingliang, et al. Study on property and modification of coal tar pitch for C/C composites[J]. New Chemical Materials, 2007, 35(5): 45-47. | |
59 | 孙振兴, 熊杰明, 葛明兰, 等. 中温沥青的喹啉不溶物脱除[J]. 炭素技术, 2009, 28(3): 10-13. |
SUN Zhenxing, XIONG Jieming, GE Minglan, et al. Removal of quinoline-insolubles from medium coal tar pitch[J]. Carbon Techniques, 2009, 28(3): 10-13. | |
60 | 唐闲逸, 魏晓慧, 许德平, 等. 中温煤沥青喹啉不溶物的脱除及炭化制备针状焦[J]. 材料研究学报, 2016, 30(6): 448-456. |
TANG Xianyi, WEI Xiaohui, XU Deping, et al. Removal of QI from medium-temperature coal tar pitch and preparation of needle coke through carbonization[J]. Chinese Journal of Materials Research, 2016, 30(6): 448-456. | |
61 | 王秀丹, 曹敏, 闵振华, 等. 热溶过滤法脱除煤焦油沥青中喹啉不溶物的研究[J]. 炭素技术, 2007, 26(1): 10-13. |
WANG Xiudan, CAO Min, MIN Zhenhua, et al. Purification of coal tar pitch for removing quinoline insolubles by hot filtration[J]. Carbon Techniques, 2007, 26(1): 10-13. | |
62 | 王振帅, 邢宝林, 韩学锋, 等. 煤沥青基微晶炭的制备及其储锂性能[J]. 化工进展, 2021, 40(1): 313-323. |
WANG Zhenshuai, XING Baolin, HAN Xuefeng, et al. Preparation of coal tar pitch-based microcrystal carbons and their lithium storage properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 313-323. | |
63 | 武强, 朱子宗, 焦万谊, 等. 新疆低质炼焦煤改质及高强度冶金焦炭的制备[J]. 煤炭学报, 2021, 46(10): 3357-3364. |
WU Qiang, ZHU Zizong, JIAO Wanyi, et al. Production of high strength metallurgical coke by modification of Xinjiang low quality coking coal[J]. Journal of China Coal Society, 2021, 46(10): 3357-3364. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[3] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[4] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[5] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[6] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[7] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[8] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[9] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[10] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[11] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[12] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
[13] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[14] | 李钊铭, 沈伯雄, 封硕, 边瑶. 锰基催化剂结构形貌对催化剂抗硫抗水性能影响[J]. 化工进展, 2023, 42(1): 226-235. |
[15] | 房科靖, 熊祖鸿, 鲁敏, 黎涛, 陈勇. 垃圾衍生燃料的制备、热转化特性及应用研究进展[J]. 化工进展, 2022, 41(S1): 132-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |