化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1597-1610.DOI: 10.16085/j.issn.1000-6613.2018-1759
喻妍, 车海英, 杨轲, 马紫峰
收稿日期:
2018-08-31
修回日期:
2019-01-09
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
马紫峰,教授,博士生导师,研究方向为电化学能源工程、动力电池与储能电池。
作者简介:
喻妍(1995-),女,硕士研究生,研究方向为钠离子电池电解液。E-mail:yuyan1995@sjtu.edu.cn
基金资助:
YU Yan, CHE Haiying, YANG Ke, MA Zifeng
Received:
2018-08-31
Revised:
2019-01-09
Online:
2019-04-05
Published:
2019-04-05
摘要: 电池热失控主要由于外部高温环境等因素,使得电池内部发生一系列的化学反应,导致电池内部的温度上升。电极材料、电解液以及它们之间的匹配程度都将影响电池的安全性能。绝热加速量热仪(ARC)由于其能研究绝热环境下的自加热情况且灵敏度高等优点成为电池安全性研究的方式之一。通过ARC测试,可以得到自放热速率和温度的变化关系,推动锂/钠离子电池动力学研究、热失控原因分析以及电极材料、电解液热安全性能评估的研究。本文回顾了近二十年来绝热加速量热仪在锂/钠离子电池安全性方面的研究,比较了不同的电极材料、电解液以及电池的热行为,筛选出安全性更高的电池材料与电解液体系,为今后的锂/钠离子电池的设计和研究提供有效的理论数据与参考。
中图分类号:
喻妍, 车海英, 杨轲, 马紫峰. 绝热加速量热仪在锂/钠离子电池研究中应用[J]. 化工进展, 2019, 38(04): 1597-1610.
YU Yan, CHE Haiying, YANG Ke, MA Zifeng. A review of the safety of secondary battery with adiabatic accelerated calorimeter[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1597-1610.
[1] | HOLZAPFEL M, ALLOIN F, YAZAMI R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures[J]. Electrochemical Acta, 2004, 49(4):581-589. |
[2] | MACNEIL D D, LU Z H, CHEN Z H, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Liion battery cathodes[J]. Journal of Power Sources, 2002, 108(1):8-14. |
[3] | WU Q L, HA S, PRAKASH J, et al. Investigations on high energy lithium-ion batteries with aqueous binder[J]. Electrochemical Acta, 2013, 114:1-6. |
[4] | ZHANG S, STEWART S A, HATCHARD T D, et al. Thermal runaway prediction for impregnated activated carbons from isothermal DSC measurements[J]. Carbon, 2003, 41(5):903-913. |
[5] | GEDER J, SONG J H, KANG S H, et al. Thermal stability of lithiumrich manganese-based cathode[J]. Solid State Ionics, 2014, 268:242-246. |
[6] | HOUSSET M, BAILLET F, DESSARD-DIANA B, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9):3224-3229. |
[7] | RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources, 1999, 79(2):135-142. |
[8] | WANG Q S, ZHAO X J, YE J N, et al. Thermal response of lithiumion battery during charging and discharging under adiabatic conditions[J]. Journal of Thermal Analysis & Calorimetry, 2016, 124(1):417-428. |
[9] | 王浩, 李建军, 王莉,等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1):53-58. WANG H, LI J J, WANG L, et al. Accelerating rate calorimeter and its application in lithium-ion battery safety[J]. Advanced Materials Industry, 2013(1):53-58. |
[10] | DOUGHTY D, ROTH E P. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2):37-44. |
[11] | 刘伶, 张乃庆, 孙克宁, 等. 锂离子电池安全性能影响因素分析[J]. 稀有金属材料与工程, 2010, 39(5):936-940. LIU L, ZHANG N Q, SUN K N, et al. Analysis of factors affecting the safety performance of lithium-ion batteries[J]. Rare Metal Materials and Engineering, 2010, 39(5):936-940. |
[12] | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 43(24):210-224. |
[13] | 陈俊燕, MARTYN, OTTAWAY,等. 加速量热仪对锂离子蓄电池安全性能的评估[J]. 电源技术, 2007, 31(1):19-22. CHEN J Y, MARTYN, OTTAWAY, et al. Evaluation on safety performance of lithium ion battery by accelerating rate calorimeter[J]. Journal of Power Sources, 2007, 31(1):19-22. |
[14] | 李慧芳, 黄家剑, 李飞, 等. 锂离子电池在充放电过程中的产热研究[J]. 电源技术, 2015, 39(7):1390-1393. LI H F, HUANG J J, LI F, et al. Study on heat production of lithium ion batteries during charge discharge process[J]. Journal of Power Sources, 2015, 39(7):1390-1393. |
[15] | MACNEIL D D, DAHN J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:Ⅰ. Li0.5CoO2[J]. Journal of the Electrochemical Society, 2001, 148(11). DOI:10.1149/1.1407245. |
[16] | MACNEIL D D, DAHN J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:Ⅱ. LiMn2O4 charged to 4.2V[J]. Journal of the Electrochemical Society, 2001, 148(11). DOI:10.1149/1.1407246. |
[17] | RÖDER, BABA, FRIEDRICH, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236:151-157. |
[18] | JIANG J W, DAHN J R. ARC studies of the thermal stability of three different cathode materials:LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2, and LiFePO4 inLiPF6 and LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1):39-43. |
[19] | KIM G Y, DAHN J R. ARC studies of the effects of electrolyte additives on the reactivity of delithiated Li1-x[Ni1/3Mn1/3Co1/3]O2 and Li1-x[Ni0.8Co0.15Al0.05]O2 positive electrode materials with electrolyte[J]. Journal of the Electrochemical Society, 2014, 161(9):A1394-A1398. |
[20] | DAHN J, JOUANNEAU S, MURPHY G, et al. Morphology and safety of Li[NixCo1-2xMnx]O2[J]. Journal of the Electrochemical Society, 2003, 150(10):A1299-A1304. |
[21] | MA L, NIE M Y, XIA J, et al. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2, with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2016, 327:145-150. |
[22] | MACNEIL D D, HATCHAID T D, DAHN J R. A comparison between the high temperature electrode/electrolyte reactions of LixCoO2 and LixMn2O4[J]. J. Electrochem Soc., 2001,148(7):A663-A667. |
[23] | WANG Y D, JIANG J W, DAHN J R. The reactivity of delithiated Li[Ni1/3Mn1/3Co1/3]O2,[Ni1/3Mn1/3Co1/3]O2, or LiCoO2 with non-aqueous electrolyte[J]. Electrochemistry Communications, 2007, 9(10):2534-2540. |
[24] | ZHOU F, ZHAO X M, DAHN J R. Synthesis, electrochemical properties, and thermal stability of Al-Doped LiNi1/3Mn1/3Co(1/3-z)AlzO2 positive electrode materials[J]. Journal of the Electrochemical Society, 2009, 156(4):A343-A347. |
[25] | JIANG J W, CHEN J, DAHN J R. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2004, 151(12):A2082-A2087. |
[26] | ZHOU F, ZHAO X M, FERGUSON P P, et al. Comparison of thermal stability between Lithiated Sn30Co30C40 LiSi, or Li0.81C6 and 1 M LiPF6 EC:DEC electrolyte at high temperature[J]. Journal of the Electrochemical Society, 2008, 155(12):A921-A925. |
[27] | JIANG J W, DAHN J R. Dependence of the heat of reaction of Li0.81C6(0.1V), Li7Ti5O12 (1.55V), and Li0.5VO2 (2.45V) reacting with nonaqueous solvents or electrolytes on the average potential of the electrode material[J]. Journal of the Electrochemical Society, 2006, 153(2):A310-A315. |
[28] | RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Fuel & Energy Abstracts, 1999, 41(6):2068-2077. |
[29] | CHE H Y, CHEN S L, XIE Y Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5):1075-1101. |
[30] | GNANARAJ J S, ZINIGRAD E, ASRAF L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119(6):794-798. |
[31] | JIANG J W, DAHN J R. Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC[J]. Electrochemical and Solid-State Letters, 2003, 6(9):A180. |
[32] | JIANG J W, DAHN J R. Effects of solvents and salts on the thermal stability of LiC6[J]. Electrochimica Acta, 2004, 49(26):4599-4604. |
[33] | JIANG J W, DAHN J R. ARC studies of the reaction between Li0FePO4, and LiPF6, or LiBOB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(7):724-728. |
[34] | MA L, XIA J, XIA X, et al. The Impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2014, 161(10):A1495-A1498. |
[35] | JIANG L H, WANG Q S, SUN J H. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte.[J]. Journal of Hazardous Materials, 2018, 351:260-269. |
[36] | EDDAHECH A, BRIAT O, VINASSA J M. Thermal characterization of a high-power lithium-ion battery:potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013, 61(6):432-439. |
[37] | JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO 2, and Li (Ni1/3Mn1/3Co1/3)O2, batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(4):127-131. |
[38] | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255(6):294-301. |
[39] | WU T Q, CHEN H D, WANG Q S, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes[J]. Journal of Hazardous Materials, 2017, 344:733-741. |
[40] | LIN C J, XU S C, LIU J L. Measurement of heat generation in a 40 A·h LiFePO4, prismatic battery using accelerating rate calorimetry[J]. International Journal of Hydrogen Energy, 2018, 43(17):8375-8384. |
[41] | LEI B X, ZHAO W J, ZIEBERT C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2016, 3(2):14. |
[42] | CHEN Z H, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite[J]. Energy & Environmental Science, 2011, 4(10):4023-4030. |
[43] | JIANG J W, FORTIER H, REIMERS J N, et al. Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte Salt[J]. Journal of the Electrochemical Society, 2004, 151(4):A609. |
[44] | YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182:464-474. |
[45] | XIA X, OBROVAC M N, DAHN J R. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes[J]. Electrochemical and Solid-State Letters, 2011, 14(9):A130. |
[46] | XIA X, DAHN J R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes[J]. Electrochemical and Solid-State Letters, 2012, 15(1):A1. |
[47] | XIA X, DAHN J R. A study of the reactivity of de-intercalated P2-NaxCoO2 with non-aqueous solvent and electrolyte by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2012, 159(5):A647-A650. |
[48] | XIA X, DAHN J R. A study of the reactivity of de-intercalated NaNi0.5Mn0.5O2 with non-aqueous solvent and electrolyte by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2012, 159(7):A1048-A1051. |
[49] | XIA X, DAHN J R. Study of the reactivity of Na/hard carbon with different solvent and electrolyte[J]. Journal of the Electrochemical Society, 2012, 159(5):A515-A519. |
[50] | XIA X, LAMANNA W M, DAHN J R. The reactivity of charged electrode materials with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) based-electrolyte at elevated temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4):A607-A609. |
[51] | XIE Y Y, XU G L, CHE H Y, et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material towards safe sodiumion batteries[J]. Chem. Mater., 2018, 30(15):4909-4918. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[5] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[8] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[9] | 杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
[10] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[11] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[12] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[13] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[14] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |